The exterior powers as functors on the category of modules #
In this file, given M : ModuleCat R and n : ℕ, we define M.exteriorPower n : ModuleCat R,
and this extends to a functor ModuleCat.exteriorPower.functor : ModuleCat R ⥤ ModuleCat R.
Equations
The postcomposition of an alternating map by a linear map.
Equations
Instances For
Constructor for elements in M.exteriorPower n when M is an object of ModuleCat R
and n : ℕ.
Equations
Instances For
The morphism M.exteriorPower n ⟶ N induced by an alternating map.
Equations
Instances For
The morphism M.exteriorPower n ⟶ N.exteriorPower n induced by a morphism M ⟶ N
in ModuleCat R.
Equations
Instances For
The functor ModuleCat R ⥤ ModuleCat R which sends a module to its
nth exterior power.
Equations
Instances For
The isomorphism M.exteriorPower 0 ≅ ModuleCat.of R R.
Equations
Instances For
The isomorphism M.exteriorPower 1 ≅ M.
Equations
Instances For
The natural isomorphism M.exteriorPower 0 ≅ ModuleCat.of R R.
Equations
Instances For
The natural isomorphism M.exteriorPower 1 ≅ M.