Documentation

Mathlib.Algebra.MonoidAlgebra.Lift

Lifting monoid algebras #

This file defines liftNC. For the definition of MonoidAlgebra.lift, see Mathlib/Algebra/MonoidAlgebra/Basic.lean.

Main results #

Multiplicative monoids #

def MonoidAlgebra.liftNC {k : Type u₁} {G : Type u₂} {R : Type u_2} [Semiring k] [NonUnitalNonAssocSemiring R] (f : k →+ R) (g : GR) :

A non-commutative version of MonoidAlgebra.lift: given an additive homomorphism f : k →+ R and a homomorphism g : G → R, returns the additive homomorphism from MonoidAlgebra k G such that liftNC f g (single a b) = f b * g a. If f is a ring homomorphism and the range of either f or g is in center of R, then the result is a ring homomorphism. If R is a k-algebra and f = algebraMap k R, then the result is an algebra homomorphism called MonoidAlgebra.lift.

Equations
    Instances For
      @[simp]
      theorem MonoidAlgebra.liftNC_single {k : Type u₁} {G : Type u₂} {R : Type u_2} [Semiring k] [NonUnitalNonAssocSemiring R] (f : k →+ R) (g : GR) (a : G) (b : k) :
      (liftNC f g) (single a b) = f b * g a
      theorem MonoidAlgebra.liftNC_mul {k : Type u₁} {G : Type u₂} {R : Type u_2} [Semiring k] [Mul G] [Semiring R] {g_hom : Type u_5} [FunLike g_hom G R] [MulHomClass g_hom G R] (f : k →+* R) (g : g_hom) (a b : MonoidAlgebra k G) (h_comm : ∀ {x y : G}, y a.supportCommute (f (b x)) (g y)) :
      (liftNC f g) (a * b) = (liftNC f g) a * (liftNC f g) b
      @[simp]
      theorem MonoidAlgebra.liftNC_one {k : Type u₁} {G : Type u₂} {R : Type u_2} [NonAssocSemiring R] [Semiring k] [One G] {g_hom : Type u_5} [FunLike g_hom G R] [OneHomClass g_hom G R] (f : k →+* R) (g : g_hom) :
      (liftNC f g) 1 = 1

      Semiring structure #

      def MonoidAlgebra.liftNCRingHom {k : Type u₁} {G : Type u₂} {R : Type u_2} [Semiring k] [Monoid G] [Semiring R] (f : k →+* R) (g : G →* R) (h_comm : ∀ (x : k) (y : G), Commute (f x) (g y)) :

      liftNC as a RingHom, for when f x and g y commute

      Equations
        Instances For
          @[simp]
          theorem MonoidAlgebra.liftNCRingHom_single {k : Type u₁} {G : Type u₂} {R : Type u_2} [Semiring k] [Monoid G] [Semiring R] (f : k →+* R) (g : G →* R) (h_comm : ∀ (x : k) (y : G), Commute (f x) (g y)) (a : G) (b : k) :
          (liftNCRingHom f g h_comm) (single a b) = f b * g a

          Additive monoids #

          def AddMonoidAlgebra.liftNC {k : Type u₁} {G : Type u₂} {R : Type u_2} [Semiring k] [NonUnitalNonAssocSemiring R] (f : k →+ R) (g : Multiplicative GR) :

          A non-commutative version of AddMonoidAlgebra.lift: given an additive homomorphism f : k →+ R and a map g : Multiplicative G → R, returns the additive homomorphism from k[G] such that liftNC f g (single a b) = f b * g a. If f is a ring homomorphism and the range of either f or g is in center of R, then the result is a ring homomorphism. If R is a k-algebra and f = algebraMap k R, then the result is an algebra homomorphism called AddMonoidAlgebra.lift.

          Equations
            Instances For
              @[simp]
              theorem AddMonoidAlgebra.liftNC_single {k : Type u₁} {G : Type u₂} {R : Type u_2} [Semiring k] [NonUnitalNonAssocSemiring R] (f : k →+ R) (g : Multiplicative GR) (a : G) (b : k) :
              (liftNC f g) (single a b) = f b * g (Multiplicative.ofAdd a)
              theorem AddMonoidAlgebra.liftNC_mul {k : Type u₁} {G : Type u₂} {R : Type u_2} [Semiring k] [Add G] [Semiring R] {g_hom : Type u_5} [FunLike g_hom (Multiplicative G) R] [MulHomClass g_hom (Multiplicative G) R] (f : k →+* R) (g : g_hom) (a b : AddMonoidAlgebra k G) (h_comm : ∀ {x y : G}, y a.supportCommute (f (b x)) (g (Multiplicative.ofAdd y))) :
              (liftNC f g) (a * b) = (liftNC f g) a * (liftNC f g) b
              @[simp]
              theorem AddMonoidAlgebra.liftNC_one {k : Type u₁} {G : Type u₂} {R : Type u_2} [Semiring k] [Zero G] [NonAssocSemiring R] {g_hom : Type u_5} [FunLike g_hom (Multiplicative G) R] [OneHomClass g_hom (Multiplicative G) R] (f : k →+* R) (g : g_hom) :
              (liftNC f g) 1 = 1

              Semiring structure #

              def AddMonoidAlgebra.liftNCRingHom {k : Type u₁} {G : Type u₂} {R : Type u_2} [Semiring k] [AddMonoid G] [Semiring R] (f : k →+* R) (g : Multiplicative G →* R) (h_comm : ∀ (x : k) (y : Multiplicative G), Commute (f x) (g y)) :

              liftNC as a RingHom, for when f and g commute

              Equations
                Instances For
                  @[simp]
                  theorem AddMonoidAlgebra.liftNCRingHom_single {k : Type u₁} {G : Type u₂} {R : Type u_2} [Semiring k] [AddMonoid G] [Semiring R] (f : k →+* R) (g : Multiplicative G →* R) (h_comm : ∀ (x : k) (y : Multiplicative G), Commute (f x) (g y)) (a : G) (b : k) :
                  (liftNCRingHom f g h_comm) (single a b) = f b * g a