Monoid algebras and the opposite ring #
Multiplicative monoids #
The opposite of a MonoidAlgebra R I equivalent as a ring to
the MonoidAlgebra Rᵐᵒᵖ Iᵐᵒᵖ over the opposite ring, taking elements to their opposite.
Equations
Instances For
theorem
MonoidAlgebra.opRingEquiv_single
{k : Type u₁}
{G : Type u₂}
[Semiring k]
[Mul G]
(r : k)
(x : G)
:
MonoidAlgebra.opRingEquiv (MulOpposite.op (single x r)) = single (MulOpposite.op x) (MulOpposite.op r)
theorem
MonoidAlgebra.opRingEquiv_symm_single
{k : Type u₁}
{G : Type u₂}
[Semiring k]
[Mul G]
(r : kᵐᵒᵖ)
(x : Gᵐᵒᵖ)
:
MonoidAlgebra.opRingEquiv.symm (single x r) = MulOpposite.op (single (MulOpposite.unop x) (MulOpposite.unop r))
Additive monoids #
noncomputable def
AddMonoidAlgebra.opRingEquiv
{k : Type u₁}
{G : Type u₂}
[Semiring k]
[AddCommMagma G]
:
The opposite of an R[I] is ring equivalent to
the AddMonoidAlgebra Rᵐᵒᵖ I over the opposite ring, taking elements to their opposite.
Equations
Instances For
@[simp]
theorem
AddMonoidAlgebra.opRingEquiv_apply
{k : Type u₁}
{G : Type u₂}
[Semiring k]
[AddCommMagma G]
(a✝ : (G →₀ k)ᵐᵒᵖ)
:
@[simp]
theorem
AddMonoidAlgebra.opRingEquiv_symm_apply
{k : Type u₁}
{G : Type u₂}
[Semiring k]
[AddCommMagma G]
(a✝ : G →₀ kᵐᵒᵖ)
:
theorem
AddMonoidAlgebra.opRingEquiv_single
{k : Type u₁}
{G : Type u₂}
[Semiring k]
[AddCommMagma G]
(r : k)
(x : G)
:
theorem
AddMonoidAlgebra.opRingEquiv_symm_single
{k : Type u₁}
{G : Type u₂}
[Semiring k]
[AddCommMagma G]
(r : kᵐᵒᵖ)
(x : Gᵐᵒᵖ)
: