Documentation

Mathlib.Algebra.Order.Group.Action.End

Tautological action by relation automorphisms #

instance RelHom.applyMulAction {α : Type u_1} {r : ααProp} :
MulAction (r →r r) α

The tautological action by r →r r on α.

Equations
    @[simp]
    theorem RelHom.smul_def {α : Type u_1} {r : ααProp} (f : r →r r) (a : α) :
    f a = f a
    instance RelHom.apply_faithfulSMul {α : Type u_1} {r : ααProp} :
    instance RelEmbedding.applyMulAction {α : Type u_1} {r : ααProp} :
    MulAction (r ↪r r) α

    The tautological action by r ↪r r on α.

    Equations
      @[simp]
      theorem RelEmbedding.smul_def {α : Type u_1} {r : ααProp} (f : r ↪r r) (a : α) :
      f a = f a
      instance RelEmbedding.apply_faithfulSMul {α : Type u_1} {r : ααProp} :
      instance RelIso.applyMulAction {α : Type u_1} {r : ααProp} :
      MulAction (r ≃r r) α

      The tautological action by r ≃r r on α.

      Equations
        @[simp]
        theorem RelIso.smul_def {α : Type u_1} {r : ααProp} (f : r ≃r r) (a : α) :
        f a = f a
        instance RelIso.apply_faithfulSMul {α : Type u_1} {r : ααProp} :