Documentation

Mathlib.Data.Fin.SuccPred

Successors and predecessors of Fin n #

In this file, we show that Fin n is both a SuccOrder and a PredOrder. Note that they are also archimedean, but this is derived from the general instance for well-orderings as opposed to a specific Fin instance.

instance Fin.instSuccOrder {n : } :
Equations
    theorem Fin.orderSucc_eq {n : } :
    Order.succ = fun (i : Fin (n + 1)) => lastCases (last n) succ i
    theorem Fin.orderSucc_apply {n : } (i : Fin (n + 1)) :
    @[simp]
    @[simp]
    @[deprecated Fin.orderSucc_eq (since := "2025-02-06")]
    theorem Fin.succ_eq {n : } :
    Order.succ = fun (i : Fin (n + 1)) => lastCases (last n) succ i

    Alias of Fin.orderSucc_eq.

    @[deprecated Fin.orderSucc_apply (since := "2025-02-06")]
    theorem Fin.succ_apply {n : } (i : Fin (n + 1)) :

    Alias of Fin.orderSucc_apply.

    instance Fin.instPredOrder {n : } :
    Equations
      theorem Fin.orderPred_eq {n : } :
      Order.succ = fun (i : Fin (n + 1)) => lastCases (last n) succ i
      theorem Fin.orderPred_apply {n : } (i : Fin (n + 1)) :
      @[simp]
      theorem Fin.orderPred_zero (n : ) :
      @[simp]
      theorem Fin.orderPred_succ {n : } (i : Fin n) :
      @[deprecated Fin.orderPred_eq (since := "2025-02-06")]
      theorem Fin.pred_eq {n : } :
      Order.succ = fun (i : Fin (n + 1)) => lastCases (last n) succ i

      Alias of Fin.orderPred_eq.

      @[deprecated Fin.orderPred_apply (since := "2025-02-06")]
      theorem Fin.pred_apply {n : } (i : Fin (n + 1)) :

      Alias of Fin.orderPred_apply.