Finite types #
This file defines a typeclass to state that a type is finite.
Main declarations #
Fintype α: Typeclass saying that a type is finite. It takes as fields aFinsetand a proof that all terms of typeαare in it.Finset.univ: The finset of all elements of a fintype.
See Data.Fintype.Basic for elementary results,
Data.Fintype.Card for the cardinality of a fintype,
the equivalence with Fin (Fintype.card α), and pigeonhole principles.
Instances #
Instances for Fintype for
{x // p x}are in this file asFintype.subtypeOption αare inData.Fintype.Optionα × βare inData.Fintype.Prodα ⊕ βare inData.Fintype.SumΣ (a : α), β aare inData.Fintype.Sigma
These files also contain appropriate Infinite instances for these types.
Infinite instances for ℕ, ℤ, Multiset α, and List α are in Data.Fintype.Lattice.
Preparatory lemmas #
instance
List.instDecidableInjOnToSetOfDecidableEq
{α : Type u_1}
{β : Type u_2}
{f : α → β}
{s : Finset α}
[DecidableEq β]
:
Equations
instance
List.instDecidableBijOnToSetOfDecidableEq
{α : Type u_1}
{β : Type u_2}
{f : α → β}
{s : Finset α}
{t' : Finset β}
[DecidableEq β]
:
Equations
theorem
Finset.mem_filter_univ
{α : Type u_1}
[Fintype α]
{p : α → Prop}
[DecidablePred p]
(x : α)
:
Elaborate set builder notation for Finset.
{x | p x}is elaborated asFinset.filter (fun x ↦ p x) Finset.univif the expected type isFinset ?α.{x : α | p x}is elaborated asFinset.filter (fun x : α ↦ p x) Finset.univif the expected type isFinset ?α.{x ∉ s | p x}is elaborated asFinset.filter (fun x ↦ p x) sᶜif either the expected type isFinset ?αor the expected type is notSet ?αandshas expected typeFinset ?α.{x ≠ a | p x}is elaborated asFinset.filter (fun x ↦ p x) {a}ᶜif the expected type isFinset ?α.
See also
Data.Set.Defsfor theSetbuilder notation elaborator that this elaborator partly overrides.Data.Finset.Basicfor theFinsetbuilder notation elaborator partly overriding this one for syntax of the form{x ∈ s | p x}.Data.Fintype.Basicfor theFinsetbuilder notation elaborator handling syntax of the form{x | p x},{x : α | p x},{x ∉ s | p x},{x ≠ a | p x}.Order.LocallyFinite.Basicfor theFinsetbuilder notation elaborator handling syntax of the form{x ≤ a | p x},{x ≥ a | p x},{x < a | p x},{x > a | p x}.
Equations
Instances For
Delaborator for Finset.filter. The pp.funBinderTypes option controls whether
to show the domain type when the filter is over Finset.univ.
Equations
Instances For
instance
Fintype.decidablePiFintype
{α : Type u_5}
{β : α → Type u_4}
[(a : α) → DecidableEq (β a)]
[Fintype α]
:
DecidableEq ((a : α) → β a)
Equations
instance
Fintype.decidableForallFintype
{α : Type u_1}
{p : α → Prop}
[DecidablePred p]
[Fintype α]
:
Decidable (∀ (a : α), p a)
Equations
instance
Fintype.decidableExistsFintype
{α : Type u_1}
{p : α → Prop}
[DecidablePred p]
[Fintype α]
:
Decidable (∃ (a : α), p a)
Equations
instance
Fintype.decidableMemRangeFintype
{α : Type u_1}
{β : Type u_2}
[Fintype α]
[DecidableEq β]
(f : α → β)
:
DecidablePred fun (x : β) => x ∈ Set.range f
Equations
instance
Fintype.decidableSubsingleton
{α : Type u_1}
[Fintype α]
[DecidableEq α]
{s : Set α}
[DecidablePred fun (x : α) => x ∈ s]
:
Equations
instance
Fintype.decidableEqEquivFintype
{α : Type u_1}
{β : Type u_2}
[DecidableEq β]
[Fintype α]
:
DecidableEq (α ≃ β)
Equations
instance
Fintype.decidableEqEmbeddingFintype
{α : Type u_1}
{β : Type u_2}
[DecidableEq β]
[Fintype α]
:
DecidableEq (α ↪ β)
Equations
theorem
Fintype.nodup_map_univ_iff_injective
{α : Type u_1}
{β : Type u_2}
[Fintype α]
{f : α → β}
:
instance
Fintype.decidableInjectiveFintype
{α : Type u_1}
{β : Type u_2}
[DecidableEq β]
[Fintype α]
:
Equations
instance
Fintype.decidableSurjectiveFintype
{α : Type u_1}
{β : Type u_2}
[DecidableEq β]
[Fintype α]
[Fintype β]
:
Equations
instance
Fintype.decidableBijectiveFintype
{α : Type u_1}
{β : Type u_2}
[DecidableEq β]
[Fintype α]
[Fintype β]
:
Equations
instance
Fintype.decidableRightInverseFintype
{α : Type u_1}
{β : Type u_2}
[DecidableEq α]
[Fintype α]
(f : α → β)
(g : β → α)
:
Equations
instance
Fintype.decidableLeftInverseFintype
{α : Type u_1}
{β : Type u_2}
[DecidableEq β]
[Fintype β]
(f : α → β)
(g : β → α)
: