The exponent of purely inseparable extensions #
This file defines the exponent of a purely inseparable extension (if one exists) and some related results.
Most results are stated using ringExpChar K rather than using [ExpChar K p] parameter because
it gives cleaner API. To use the results in a context with [ExpChar K p], consider using
ringExpChar.eq K p for substitution.
Main definitions #
IsPurelyInseparable.HasExponent: typeclass to assert a purely inseparable field extensionL / Khas an exponent, that is a smallest natural numberesuch thata ^ ringExpChar K ^ e ∈ Kfor alla ∈ L.IsPurelyInseparable.exponent: the exponent of a purely inseparable field extension.IsPurelyInseparable.elemExponent: the exponent of an element of a purely inseparable field extension, that is the smallest natural numberesuch thata ^ ringExpChar K ^ e ∈ K.IsPurelyInseparable.iterateFrobenius: the iterated Frobenius map (ring homomorphism)L →+* Kfor purely inseparable field extensionL / Kwith exponent; forn ≥ exponent K L, it acts likex ↦ x ^ p ^ nbut the codomain is the base fieldK.IsPurelyInseparable.iterateFrobeniusₛₗ: version ofiterateFrobeniusas a semilinear map over a subfieldFofK, wrt the iterated Frobenius homomorphism onF.
Tags #
purely inseparable
A predicate class on a ring extension saying that there is a natural number e
such that a ^ ringExpChar K ^ e ∈ K for all a ∈ L.
- has_exponent : ∃ (e : ℕ), ∀ (a : L), a ^ ringExpChar K ^ e ∈ (algebraMap K L).range
Instances
Version of hasExponent_iff using ExpChar.
The exponent of a purely inseparable extension is the smallest
natural number e such that a ^ ringExpChar K ^ e ∈ K for all a ∈ L.
Equations
Instances For
Version of exponent_def using ExpChar.
Version of exponent_min using ExpChar.
The exponent of an element a ∈ L of a purely inseparable field extension L / K
is the smallest natural number e such that a ^ ringExpChar K ^ e ∈ K.
Equations
Instances For
The element y of the base field K such that
a ^ ringExpChar K ^ elemExponent K a = algebraMap K L y.
See IsPurelyInseparable.algebraMap_elemReduct_eq.
Equations
Instances For
Version of minpoly_eq using ExpChar.
The degree of the minimal polynomial of an element a ∈ L equals
ringExpChar K ^ elemExponent K a.
Version of minpoly_natDegree_eq using ExpChar.
Version of algebraMap_elemReduct_eq using ExpChar.
Version of elemExponent_def using ExpChar.
Version of elemExponent_le_of_pow_mem using ExpChar.
Version of elemExponent_min using ExpChar.
An exponent of an element is less or equal than exponent of the extension.
Iterated Frobenius map (ring homomorphism) for purely inseparable field extension with exponent.
If n ≥ exponent K L, it acts like x ↦ x ^ p ^ n but the codomain is the base field K.
Equations
Instances For
Action of iterateFrobenius on the top field.
Action of iterateFrobenius on the bottom field.
Version of iterateFrobenius as a semilinear map over a subfield F of K, wrt the
iterated Frobenius homomorphism on F.
Equations
Instances For
Action of iterateFrobeniusₛₗ on the top field.
Action of iterateFrobeniusₛₗ on the bottom field.
Action of iterateFrobeniusₛₗ on the base field.