Equivalences for Option α #
We define
Equiv.optionCongr: theOption α ≃ Option βconstructed frome : α ≃ βby sendingnonetonone, and applyingeelsewhere.Equiv.removeNone: theα ≃ βconstructed fromOption α ≃ Option βby removingnonefrom both sides.
@[simp]
@[simp]
@[simp]
When α and β are in the same universe, this is the same as the result of
EquivFunctor.mapEquiv.
@[simp]
@[simp]
theorem
Equiv.optionSubtype_symm_apply_apply_coe
{α : Type u_1}
{β : Type u_2}
[DecidableEq β]
(x : β)
(e : α ≃ { y : β // y ≠ x })
(a : α)
:
@[simp]
theorem
Equiv.optionSubtype_symm_apply_apply_some
{α : Type u_1}
{β : Type u_2}
[DecidableEq β]
(x : β)
(e : α ≃ { y : β // y ≠ x })
(a : α)
:
@[simp]
theorem
Equiv.optionSubtype_symm_apply_apply_none
{α : Type u_1}
{β : Type u_2}
[DecidableEq β]
(x : β)
(e : α ≃ { y : β // y ≠ x })
:
@[simp]
@[simp]
theorem
Equiv.optionSubtypeNe_apply
{α : Type u_1}
[DecidableEq α]
(a : α)
(a✝ : Option { y : α // y ≠ a })
:
@[simp]
@[simp]
theorem
Equiv.optionSubtypeNe_some
{α : Type u_1}
[DecidableEq α]
(a : α)
(b : { b : α // b ≠ a })
:
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]