Iterations of a function #
In this file we prove simple properties of Nat.iterate f n a.k.a. f^[n]:
iterate_zero,iterate_succ,iterate_succ',iterate_add,iterate_mul: formulas forf^[0],f^[n+1](two versions),f^[n+m], andf^[n*m];iterate_id:id^[n]=id;Injective.iterate,Surjective.iterate,Bijective.iterate: iterates of an injective/surjective/bijective function belong to the same class;LeftInverse.iterate,RightInverse.iterate,Commute.iterate_left,Commute.iterate_right,Commute.iterate_iterate: some properties of pairs of functions survive under iterationsiterate_fixed,Function.Semiconj.iterate_*,Function.Semiconj₂.iterate: ifffixes a point (resp., semiconjugates unary/binary operations), then so doesf^[n].
theorem
Function.Commute.iterate_right
{α : Type u}
{f g : α → α}
(h : Function.Commute f g)
(n : ℕ)
:
Function.Commute f g^[n]
theorem
Function.Commute.iterate_left
{α : Type u}
{f g : α → α}
(h : Function.Commute f g)
(n : ℕ)
:
Function.Commute f^[n] g
theorem
Function.Commute.iterate_iterate
{α : Type u}
{f g : α → α}
(h : Function.Commute f g)
(m n : ℕ)
:
Function.Commute f^[m] g^[n]
theorem
Function.Commute.iterate_iterate_self
{α : Type u}
(f : α → α)
(m n : ℕ)
:
Function.Commute f^[m] f^[n]
theorem
Function.LeftInverse.iterate
{α : Type u}
{f g : α → α}
(hg : LeftInverse g f)
(n : ℕ)
:
LeftInverse g^[n] f^[n]
theorem
Function.RightInverse.iterate
{α : Type u}
{f g : α → α}
(hg : RightInverse g f)
(n : ℕ)
:
RightInverse g^[n] f^[n]
theorem
Function.iterate_commute
{α : Type u}
(m n : ℕ)
:
Function.Commute (fun (f : α → α) => f^[m]) fun (f : α → α) => f^[n]