The category of bounded lattices #
This file defines BddLat, the category of bounded lattices.
In literature, this is sometimes called Lat, the category of lattices, because being a lattice is
understood to entail having a bottom and a top element.
The type of morphisms in BddLat.
- hom' : BoundedLatticeHom ↑X.toLat ↑Y.toLat
The underlying
BoundedLatticeHom.
Instances For
instance
BddLat.instConcreteCategoryBoundedLatticeHomCarrier :
CategoryTheory.ConcreteCategory BddLat fun (x1 x2 : BddLat) => BoundedLatticeHom ↑x1.toLat ↑x2.toLat
Equations
@[reducible, inline]
abbrev
BddLat.ofHom
{X Y : Type u}
[Lattice X]
[BoundedOrder X]
[Lattice Y]
[BoundedOrder Y]
(f : BoundedLatticeHom X Y)
:
Typecheck a BoundedLatticeHom as a morphism in BddLat.
Equations
Instances For
@[simp]
@[simp]
theorem
BddLat.ext
{X Y : BddLat}
{f g : X ⟶ Y}
(w : ∀ (x : ↑X.toLat), (CategoryTheory.ConcreteCategory.hom f) x = (CategoryTheory.ConcreteCategory.hom g) x)
:
theorem
BddLat.ext_iff
{X Y : BddLat}
{f g : X ⟶ Y}
:
f = g ↔ ∀ (x : ↑X.toLat), (CategoryTheory.ConcreteCategory.hom f) x = (CategoryTheory.ConcreteCategory.hom g) x
Equations
Equations
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
The functor that adds a bottom and a top element to a lattice. This is the free functor.
Equations
Instances For
latToBddLat is left adjoint to the forgetful functor, meaning it is the free
functor from Lat to BddLat.
Equations
Instances For
latToBddLat and OrderDual commute.