The category of distributive lattices #
This file defines DistLat, the category of distributive lattices.
Note that DistLat in the literature doesn't always
correspond to DistLat as we don't require bottom or top elements. Instead, this DistLat
corresponds to BddDistLat.
The category of distributive lattices.
- carrier : Type u_1
The underlying distributive lattice.
- str : DistribLattice ↑self
Instances For
@[reducible, inline]
Construct a bundled DistLat from the underlying type and typeclass.
Equations
Instances For
instance
DistLat.instConcreteCategoryLatticeHomCarrier :
CategoryTheory.ConcreteCategory DistLat fun (x1 x2 : DistLat) => LatticeHom ↑x1 ↑x2
Equations
@[reducible, inline]
Typecheck a LatticeHom as a morphism in DistLat.
Equations
Instances For
The results below duplicate the ConcreteCategory simp lemmas, but we can keep them for dsimp.
@[simp]
@[simp]
@[simp]
theorem
DistLat.ext
{X Y : DistLat}
{f g : X ⟶ Y}
(w : ∀ (x : ↑X), (CategoryTheory.ConcreteCategory.hom f) x = (CategoryTheory.ConcreteCategory.hom g) x)
:
theorem
DistLat.ext_iff
{X Y : DistLat}
{f g : X ⟶ Y}
:
f = g ↔ ∀ (x : ↑X), (CategoryTheory.ConcreteCategory.hom f) x = (CategoryTheory.ConcreteCategory.hom g) x
@[simp]
@[simp]
theorem
DistLat.hom_ofHom
{X Y : Type u}
[DistribLattice X]
[DistribLattice Y]
(f : LatticeHom X Y)
:
@[simp]
@[simp]
theorem
DistLat.ofHom_comp
{X Y Z : Type u}
[DistribLattice X]
[DistribLattice Y]
[DistribLattice Z]
(f : LatticeHom X Y)
(g : LatticeHom Y Z)
:
theorem
DistLat.ofHom_apply
{X Y : Type u}
[DistribLattice X]
[DistribLattice Y]
(f : LatticeHom X Y)
(x : X)
:
Constructs an equivalence between distributive lattices from an order isomorphism between them.
Equations
Instances For
@[simp]