Defines the swap_var tactic #
Swap the names of two hypotheses.
swap_var swap_rule₁, swap_rule₂, ⋯ applies swap_rule₁ then swap_rule₂ then ⋯.
A swap_rule is of the form x y or x ↔ y, and "applying it" means swapping the variable name
x by y and vice-versa on all hypotheses and the goal.
example {P Q : Prop} (q : P) (p : Q) : P ∧ Q := by
swap_var p ↔ q
exact ⟨p, q⟩