Documentation

ArkLib.ProofSystem.Stir.Combine

Section 4.5 from STIR [ACFY24]

theorem Combine.geometric_sum_units {F : Type u_1} [Field F] [Fintype F] [DecidableEq F] {r : Fˣ} {a : } :
j : Fin (a + 1), r ^ j = if r = 1 then a + 1 else (1 - r ^ (a + 1)) / (1 - r)

Fact 4.10 Geometric series formula in a field, for a unit r : F.

def Combine.ri {m : } {F : Type u_1} [Field F] (dstar : ) (degs : Fin m) (r : F) :
Fin mF

Coefficients r_i as used in the definition of Combine, for i < m, r_i := r^{i - 1 + sum_{j < i}(d* - d_j)}

Equations
Instances For
    def Combine.combineInterm {m : } {F : Type u_1} [Field F] {ι : Type u_2} {φ : ι F} (dstar : ) (r : F) (fs : Fin mιF) (degs : Fin m) (hdegs : ∀ (i : Fin m), degs i dstar) :
    ιF

    Definition 4.11.1 Combine(d*, r, (f_0, d_0), …, (f_{m-1}, d_{m-1}))(x) := sum_{i < m} r_i * f_i(x) * ( sum_{l < (d* - d_i + 1)} (r * φ(x))^l )

    Equations
    Instances For
      def Combine.conditionalExp {F : Type u_1} [Field F] [DecidableEq F] {ι : Type u_2} (φ : ι F) (dstar degree : ) (r : F) :
      ιF

      if (r * φ(x)) = 1, then (dstar - degree + 1) else (1 - r * φ(x)^(dstar - degree + 1)) / (1 - r * φ(x))

      Equations
      Instances For
        def Combine.combineFinal {m : } {F : Type u_1} [Field F] [DecidableEq F] {ι : Type u_2} (φ : ι F) (dstar : ) (r : F) (fs : Fin mιF) (degs : Fin m) (hdegs : ∀ (i : Fin m), degs i dstar) :
        ιF

        Definition 4.11.2 Combine(d*, r, (f_0, d_0), …, (f_{m-1}, d_{m-1}))(x) := sum_{i < m} r_i * f_i(x) * conditionExp(dstar, degsᵢ, r)

        Equations
        Instances For
          def Combine.degreeCorrInterm {F : Type u_1} [Field F] {ι : Type u_2} {φ : ι F} (dstar degree : ) (r : F) (f : ιF) (hd : degree dstar) :
          ιF

          Definition 4.12.1 DegCor(d*, r, f, degree)(x) := f(x) * ( sum_{ l < d* - d + 1 } (r * φ(x))^l )

          Equations
          Instances For
            def Combine.degreeCorrFinal {F : Type u_1} [Field F] [DecidableEq F] {ι : Type u_2} {φ : ι F} (dstar degree : ) (r : F) (f : ιF) (hd : degree dstar) :
            ιF

            Definition 4.12.2 DegCor(d*, r, f, d)(x) := f(x) * conditionalExp(x)

            Equations
            Instances For
              theorem Combine.combine {F : Type} [Field F] [Fintype F] [DecidableEq F] {ι : Type} [Fintype ι] [Nonempty ι] {φ : ι F} {dstar m degree : } (fs : Fin mιF) (degs : Fin m) (hdegs : ∀ (i : Fin m), degs i dstar) (δ : ) (hδPos : δ > 0) (hδLt : δ < min (1 - Bstar ↑(ρ ReedSolomon.code φ degree)) (1 - ↑(ρ ReedSolomon.code φ degree) - 1 / (Fintype.card ι))) (hProb : (do let rPMF.uniformOfFintype F pure (δᵣ(combineFinal φ dstar r fs degs hdegs, (ReedSolomon.code φ dstar)) δ)) True > ENNReal.ofReal (err' F dstar (↑(ρ ReedSolomon.code φ degree)) δ (m * (dstar + 1) - i : Fin m, degs i))) :
              ∃ (S : Finset ι), S.card (1 - δ) * (Fintype.card ι) ∀ (i : Fin m), uReedSolomon.code φ (degs i), xS, fs i x = u x

              Lemma 4.13 Let dstar be the target degree, f₁,...,f_{m-1} : ι → F, 0 < degs₁,...,degs_{m-1} < dstar be degrees and δ ∈ (0, min{(1-BStar(ρ)), (1-ρ-1/|ι|)}) be a distance parameter, then Pr_{r ← F} [δᵣ(Combine(dstar,r,(f₁,degs₁),...,(fₘ,degsₘ)))] > err' (dstar, ρ, δ, m * (dstar + 1) - ∑ i degsᵢ)