Section 4.5 from STIR [ACFY24]
Coefficients r_i as used in the definition of Combine, for i < m, r_i := r^{i - 1 + sum_{j < i}(d* - d_j)}
Equations
- Combine.ri dstar degs r i = r ^ ((↑i).pred + ∑ j ∈ Finset.Iio i, (dstar - degs j))
Instances For
Definition 4.11.1 Combine(d*, r, (f_0, d_0), …, (f_{m-1}, d_{m-1}))(x) := sum_{i < m} r_i * f_i(x) * ( sum_{l < (d* - d_i + 1)} (r * φ(x))^l )
Equations
- Combine.combineInterm dstar r fs degs hdegs x = ∑ i : Fin m, Combine.ri dstar degs r i * fs i x * ∑ l ∈ Finset.Iio (dstar - degs i + 1), (r * φ x) ^ l
Instances For
if (r * φ(x)) = 1, then (dstar - degree + 1) else (1 - r * φ(x)^(dstar - degree + 1)) / (1 - r * φ(x))
Equations
Instances For
Definition 4.11.2 Combine(d*, r, (f_0, d_0), …, (f_{m-1}, d_{m-1}))(x) := sum_{i < m} r_i * f_i(x) * conditionExp(dstar, degsᵢ, r)
Equations
- Combine.combineFinal φ dstar r fs degs hdegs x = ∑ i : Fin m, Combine.ri dstar degs r i * fs i x * Combine.conditionalExp φ dstar (degs i) r x
Instances For
Definition 4.12.1 DegCor(d*, r, f, degree)(x) := f(x) * ( sum_{ l < d* - d + 1 } (r * φ(x))^l )
Equations
- Combine.degreeCorrInterm dstar degree r f hd x = f x * ∑ l ∈ Finset.Iio (dstar - degree + 1), (r * φ x) ^ l
Instances For
Definition 4.12.2 DegCor(d*, r, f, d)(x) := f(x) * conditionalExp(x)
Equations
- Combine.degreeCorrFinal dstar degree r f hd x = f x * Combine.conditionalExp φ dstar degree r x
Instances For
Lemma 4.13
Let dstar
be the target degree, f₁,...,f_{m-1} : ι → F
,
0 < degs₁,...,degs_{m-1} < dstar
be degrees and
δ ∈ (0, min{(1-BStar(ρ)), (1-ρ-1/|ι|)})
be a distance parameter, then
Pr_{r ← F} [δᵣ(Combine(dstar,r,(f₁,degs₁),...,(fₘ,degsₘ)))]
> err' (dstar, ρ, δ, m * (dstar + 1) - ∑ i degsᵢ)