theorem
proximity_gap
{F : Type}
[Field F]
[Fintype F]
[DecidableEq F]
{ι : Type}
[Fintype ι]
[Nonempty ι]
{φ : ι ↪ F}
{degree m : ℕ}
{δ : NNReal}
{f : Fin m → ι → F}
{GenFun : F → Fin m → F}
(h :
↑δ < 1 - Bstar ↑(ρ ReedSolomon.code φ degree) →
∀ {f : Fin m → ι → F},
↑(do
let r ← PMF.uniformOfFintype F
pure (↑δᵣ(fun (x : ι) => ∑ j : Fin m, GenFun r j * f j x, ↑(ReedSolomon.code φ degree)) ≤ ↑δ))
True > ENNReal.ofReal (err' F degree (↑(ρ ReedSolomon.code φ degree)) (↑δ) m))
:
∃ (S : Finset ι),
↑S.card ≥ (1 - δ) * ↑(Fintype.card ι) ∧ ∃ u ∈ ReedSolomon.code φ degree, ∀ (i : Fin m), ∀ x ∈ S, f i x = u x
Theorem 4.1[BCIKS20] from STIR[ACFY24]
Let C = RS[F, ι, degree]
be a ReedSolomon code with rate degree / |ι|
and let Bstar(ρ) = √ρ. For all δ ∈ (0, 1 - Bstar(ρ))
, f₁,...,fₘ : ι → F
, if
Pr_{r ← F} [ δᵣ(rⱼ * fⱼ, C) ≤ δ] > err'(degree, ρ, δ, m)
then ∃ S ⊆ ι, |S| ≥ (1-δ) * |ι| and
∀ i : m, ∃ u : C, u(S)=fᵢ(S)