Documentation

Init.Grind.Ring.Envelope

def Lean.Grind.Ring.OfSemiring.r (α : Type u) [Semiring α] :
α × αα × αProp
Equations
    Instances For
      Equations
        Instances For
          theorem Lean.Grind.Ring.OfSemiring.r_rfl {α : Type u} [Semiring α] (a : α × α) :
          r α a a
          theorem Lean.Grind.Ring.OfSemiring.r_sym {α : Type u} [Semiring α] {a b : α × α} :
          r α a br α b a
          theorem Lean.Grind.Ring.OfSemiring.r_trans {α : Type u} [Semiring α] {a b c : α × α} :
          r α a br α b cr α a c
          theorem Lean.Grind.Ring.OfSemiring.mul_helper {α : Type u_1} [Semiring α] {a₁ b₁ a₂ b₂ a₃ b₃ a₄ b₄ k₁ k₂ : α} (h₁ : a₁ + b₃ + k₁ = b₁ + a₃ + k₁) (h₂ : a₂ + b₄ + k₂ = b₂ + a₄ + k₂) :
          (k : α), a₁ * a₂ + b₁ * b₂ + (a₃ * b₄ + b₃ * a₄) + k = a₁ * b₂ + b₁ * a₂ + (a₃ * a₄ + b₃ * b₄) + k
          def Lean.Grind.Ring.OfSemiring.Q.mk {α : Type u} [Semiring α] (p : α × α) :
          Q α
          Equations
            Instances For
              def Lean.Grind.Ring.OfSemiring.Q.liftOn₂ {α : Type u} [Semiring α] {β : Sort u_1} (q₁ q₂ : Q α) (f : α × αα × αβ) (h : ∀ {a₁ b₁ a₂ b₂ : α × α}, r α a₁ a₂r α b₁ b₂f a₁ b₁ = f a₂ b₂) :
              β
              Equations
                Instances For
                  def Lean.Grind.Ring.OfSemiring.Q.ind {α : Type u} [Semiring α] {β : Q αProp} (mk : ∀ (a : α × α), β (mk a)) (q : Q α) :
                  β q
                  Equations
                    Instances For
                      Equations
                        Instances For
                          Equations
                            Instances For
                              def Lean.Grind.Ring.OfSemiring.sub {α : Type u} [Semiring α] (q₁ q₂ : Q α) :
                              Q α
                              Equations
                                Instances For
                                  def Lean.Grind.Ring.OfSemiring.add {α : Type u} [Semiring α] (q₁ q₂ : Q α) :
                                  Q α
                                  Equations
                                    Instances For
                                      def Lean.Grind.Ring.OfSemiring.mul {α : Type u} [Semiring α] (q₁ q₂ : Q α) :
                                      Q α
                                      Equations
                                        Instances For
                                          def Lean.Grind.Ring.OfSemiring.neg {α : Type u} [Semiring α] (q : Q α) :
                                          Q α
                                          Equations
                                            Instances For
                                              theorem Lean.Grind.Ring.OfSemiring.add_comm {α : Type u} [Semiring α] (a b : Q α) :
                                              add a b = add b a
                                              theorem Lean.Grind.Ring.OfSemiring.add_zero {α : Type u} [Semiring α] (a : Q α) :
                                              add a (natCast 0) = a
                                              theorem Lean.Grind.Ring.OfSemiring.add_assoc {α : Type u} [Semiring α] (a b c : Q α) :
                                              add (add a b) c = add a (add b c)
                                              theorem Lean.Grind.Ring.OfSemiring.sub_eq_add_neg {α : Type u} [Semiring α] (a b : Q α) :
                                              sub a b = add a (neg b)
                                              theorem Lean.Grind.Ring.OfSemiring.mul_assoc {α : Type u} [Semiring α] (a b c : Q α) :
                                              mul (mul a b) c = mul a (mul b c)
                                              theorem Lean.Grind.Ring.OfSemiring.mul_one {α : Type u} [Semiring α] (a : Q α) :
                                              mul a (natCast 1) = a
                                              theorem Lean.Grind.Ring.OfSemiring.one_mul {α : Type u} [Semiring α] (a : Q α) :
                                              mul (natCast 1) a = a
                                              theorem Lean.Grind.Ring.OfSemiring.left_distrib {α : Type u} [Semiring α] (a b c : Q α) :
                                              mul a (add b c) = add (mul a b) (mul a c)
                                              theorem Lean.Grind.Ring.OfSemiring.right_distrib {α : Type u} [Semiring α] (a b c : Q α) :
                                              mul (add a b) c = add (mul a c) (mul b c)
                                              def Lean.Grind.Ring.OfSemiring.hPow {α : Type u} [Semiring α] (a : Q α) (n : Nat) :
                                              Q α
                                              Equations
                                                Instances For
                                                  def Lean.Grind.Ring.OfSemiring.nsmul {α : Type u} [Semiring α] (n : Nat) (a : Q α) :
                                                  Q α
                                                  Equations
                                                    Instances For
                                                      def Lean.Grind.Ring.OfSemiring.zsmul {α : Type u} [Semiring α] (i : Int) (a : Q α) :
                                                      Q α
                                                      Equations
                                                        Instances For
                                                          theorem Lean.Grind.Ring.OfSemiring.neg_zsmul {α : Type u} [Semiring α] (i : Int) (a : Q α) :
                                                          zsmul (-i) a = neg (zsmul i a)
                                                          Equations
                                                            def Lean.Grind.Ring.OfSemiring.toQ {α : Type u} [Semiring α] (a : α) :
                                                            Q α
                                                            Equations
                                                              Instances For

                                                                Embedding theorems

                                                                theorem Lean.Grind.Ring.OfSemiring.toQ_add {α : Type u} [Semiring α] (a b : α) :
                                                                (a + b) = a + b
                                                                theorem Lean.Grind.Ring.OfSemiring.toQ_mul {α : Type u} [Semiring α] (a b : α) :
                                                                (a * b) = a * b
                                                                theorem Lean.Grind.Ring.OfSemiring.toQ_pow {α : Type u} [Semiring α] (a : α) (n : Nat) :
                                                                (a ^ n) = a ^ n

                                                                Helper definitions and theorems for proving toQ is injective when CommSemiring has the right_cancel property

                                                                theorem Lean.Grind.Ring.OfSemiring.Q.exact {α : Type u} [Semiring α] {a b : α × α} :
                                                                mk a = mk br α a b
                                                                theorem Lean.Grind.Ring.OfSemiring.toQ_inj {α : Type u} [Semiring α] [AddRightCancel α] {a b : α} :
                                                                a = ba = b
                                                                theorem Lean.Grind.Ring.OfSemiring.mk_le_mk {α : Type u} [Semiring α] [Preorder α] [OrderedAdd α] {a₁ a₂ b₁ b₂ : α} :
                                                                Q.mk (a₁, a₂) Q.mk (b₁, b₂) a₁ + b₂ a₂ + b₁
                                                                theorem Lean.Grind.Ring.OfSemiring.toQ_le {α : Type u} [Semiring α] [Preorder α] [OrderedAdd α] {a b : α} :
                                                                a b a b
                                                                theorem Lean.Grind.Ring.OfSemiring.toQ_lt {α : Type u} [Semiring α] [Preorder α] [OrderedAdd α] {a b : α} :
                                                                a < b a < b