Documentation
Lean
.
Meta
.
Tactic
.
Grind
.
Arith
.
Linear
.
IneqCnstr
Search
return to top
source
Imports
Init.Grind.Ring.Poly
Lean.Meta.Tactic.Grind.Arith.CommRing.DenoteExpr
Lean.Meta.Tactic.Grind.Arith.CommRing.Reify
Lean.Meta.Tactic.Grind.Arith.Linear.DenoteExpr
Lean.Meta.Tactic.Grind.Arith.Linear.Proof
Lean.Meta.Tactic.Grind.Arith.Linear.Reify
Lean.Meta.Tactic.Grind.Arith.Linear.StructId
Lean.Meta.Tactic.Grind.Arith.Linear.Var
Imported by
Lean
.
Meta
.
Grind
.
Arith
.
Linear
.
isLeInst
Lean
.
Meta
.
Grind
.
Arith
.
Linear
.
isLtInst
Lean
.
Meta
.
Grind
.
Arith
.
Linear
.
IneqCnstr
.
assert
Lean
.
Meta
.
Grind
.
Arith
.
Linear
.
propagateCommRingIneq
Lean
.
Meta
.
Grind
.
Arith
.
Linear
.
propagateIntModuleIneq
Lean
.
Meta
.
Grind
.
Arith
.
Linear
.
propagateIneq
source
def
Lean
.
Meta
.
Grind
.
Arith
.
Linear
.
isLeInst
(
struct
:
Struct
)
(
inst
:
Expr
)
:
Bool
Equations
Instances For
source
def
Lean
.
Meta
.
Grind
.
Arith
.
Linear
.
isLtInst
(
struct
:
Struct
)
(
inst
:
Expr
)
:
Bool
Equations
Instances For
source
def
Lean
.
Meta
.
Grind
.
Arith
.
Linear
.
IneqCnstr
.
assert
(
c
:
IneqCnstr
)
:
LinearM
Unit
Equations
Instances For
source
def
Lean
.
Meta
.
Grind
.
Arith
.
Linear
.
propagateCommRingIneq
(
e
lhs
rhs
:
Expr
)
(
strict
eqTrue
:
Bool
)
:
LinearM
Unit
Equations
Instances For
source
def
Lean
.
Meta
.
Grind
.
Arith
.
Linear
.
propagateIntModuleIneq
(
e
lhs
rhs
:
Expr
)
(
strict
eqTrue
:
Bool
)
:
LinearM
Unit
Equations
Instances For
source
def
Lean
.
Meta
.
Grind
.
Arith
.
Linear
.
propagateIneq
(
e
:
Expr
)
(
eqTrue
:
Bool
)
:
GoalM
Unit
Equations
Instances For