Documentation

Mathlib.Algebra.Azumaya.Basic

Basic properties of Azumaya algebras #

In this file we prove basic facts about Azumaya algebras such as R is an Azumaya algebra over itself where R is a commutative ring.

Main Results #

Tags #

Noncommutative algebra, Azumaya algebra, Brauer Group

@[reducible, inline]

The "canonical" isomorphism between R ⊗ Rᵒᵖ and End R R which is equal to AlgHom.mulLeftRight R R.

Equations
    Instances For
      instance IsAzumaya.id (R : Type u_1) [CommSemiring R] :

      The following diagram commutes:

                e ⊗ eᵒᵖ
      A ⊗ Aᵐᵒᵖ  ------------> B ⊗ Bᵐᵒᵖ
        |                        |
        |                        |
        | mulLeftRight R A       | mulLeftRight R B
        |                        |
        V                        V
      End R A   ------------> End R B
                e.conj
      
      theorem IsAzumaya.of_AlgEquiv (R : Type u_1) (A : Type u_2) (B : Type u_3) [CommSemiring R] [Ring A] [Ring B] [Algebra R A] [Algebra R B] (e : A ≃ₐ[R] B) [IsAzumaya R A] :