Category instance for algebras over a commutative ring #
We introduce the bundled category AlgCat
of algebras over a fixed commutative ring R
along
with the forgetful functors to RingCat
and ModuleCat
. We furthermore show that the functor
associating to a type the free R
-algebra on that type is left adjoint to the forgetful functor.
@[reducible, inline]
The object in the category of R-algebras associated to a type equipped with the appropriate
typeclasses. This is the preferred way to construct a term of AlgCat R
.
Equations
Instances For
Equations
instance
AlgCat.instConcreteCategoryAlgHomCarrier
(R : Type u)
[CommRing R]
:
CategoryTheory.ConcreteCategory (AlgCat R) fun (x1 x2 : AlgCat R) => ↑x1 →ₐ[R] ↑x2
Equations
The results below duplicate the ConcreteCategory
simp lemmas, but we can keep them for dsimp
.
@[simp]
instance
AlgCat.instRingObjForget
(R : Type u)
[CommRing R]
{S : AlgCat R}
:
Ring ((CategoryTheory.forget (AlgCat R)).obj S)
Equations
instance
AlgCat.instAlgebraObjForget
(R : Type u)
[CommRing R]
{S : AlgCat R}
:
Algebra R ((CategoryTheory.forget (AlgCat R)).obj S)
Equations
Equations
instance
AlgCat.hasForgetToModule
(R : Type u)
[CommRing R]
:
CategoryTheory.HasForget₂ (AlgCat R) (ModuleCat R)
Equations
@[simp]
@[simp]
The "free algebra" functor, sending a type S
to the free algebra on S
.
Equations
Instances For
@[simp]
@[simp]
The free/forget adjunction for R
-algebras.
Equations
Instances For
@[simp]
theorem
CategoryTheory.Iso.toAlgEquiv_apply
{R : Type u}
[CommRing R]
{X Y : AlgCat R}
(i : X ≅ Y)
(a : ↑X)
:
@[simp]
theorem
CategoryTheory.Iso.toAlgEquiv_symm_apply
{R : Type u}
[CommRing R]
{X Y : AlgCat R}
(i : X ≅ Y)
(a : ↑Y)
: