Documentation

Mathlib.Algebra.Category.FGModuleCat.Basic

The category of finitely generated modules over a ring #

This introduces FGModuleCat R, the category of finitely generated modules over a ring R. It is implemented as a full subcategory on a subtype of ModuleCat R.

When K is a field, FGModuleCat K is the category of finite dimensional vector spaces over K.

We first create the instance as a preadditive category. When R is commutative we then give the structure as an R-linear monoidal category. When R is a field we give it the structure of a closed monoidal category and then as a right-rigid monoidal category.

Future work #

Finitely generated modules, as a property of objects of ModuleCat R.

Equations
    Instances For
      theorem ModuleCat.isFG_iff {R : Type u} [Ring R] (V : ModuleCat R) :
      @[reducible, inline]
      abbrev FGModuleCat (R : Type u) [Ring R] :
      Type (max u (v + 1))

      The category of finitely generated modules.

      Equations
        Instances For
          def FGModuleCat.carrier {R : Type u} [Ring R] (M : FGModuleCat R) :

          A synonym for M.obj.carrier, which we can mark with @[coe].

          Equations
            Instances For
              Equations
                @[simp]
                theorem FGModuleCat.obj_carrier {R : Type u} [Ring R] (M : FGModuleCat R) :
                M.obj = M
                instance instAddCommGroupCarrier {R : Type u} [Ring R] (M : FGModuleCat R) :
                Equations
                  instance instModuleCarrier {R : Type u} [Ring R] (M : FGModuleCat R) :
                  Module R M
                  Equations
                    instance instFiniteCarrier {R : Type u} [Ring R] (M : FGModuleCat R) :
                    @[reducible, inline]
                    abbrev FGModuleCat.of (R : Type u) [Ring R] (V : Type v) [AddCommGroup V] [Module R V] [Module.Finite R V] :

                    Lift an unbundled finitely generated module to FGModuleCat R.

                    Equations
                      Instances For
                        @[simp]
                        theorem FGModuleCat.of_carrier (R : Type u) [Ring R] (V : Type v) [AddCommGroup V] [Module R V] [Module.Finite R V] :
                        (of R V) = V
                        @[reducible, inline]
                        abbrev FGModuleCat.ofHom {R : Type u} [Ring R] {V W : Type v} [AddCommGroup V] [Module R V] [Module.Finite R V] [AddCommGroup W] [Module R W] [Module.Finite R W] (f : V →ₗ[R] W) :
                        of R V of R W

                        Lift a linear map between finitely generated modules to FGModuleCat R.

                        Equations
                          Instances For
                            theorem FGModuleCat.hom_ext {R : Type u} [Ring R] {V W : FGModuleCat R} {f g : V W} (h : ModuleCat.Hom.hom f = ModuleCat.Hom.hom g) :
                            f = g
                            theorem FGModuleCat.hom_ext_iff {R : Type u} [Ring R] {V W : FGModuleCat R} {f g : V W} :
                            def FGModuleCat.isoToLinearEquiv {R : Type u} [Ring R] {V W : FGModuleCat R} (i : V W) :
                            V ≃ₗ[R] W

                            Converts an isomorphism in the category FGModuleCat R to a LinearEquiv between the underlying modules.

                            Equations
                              Instances For

                                Converts a LinearEquiv to an isomorphism in the category FGModuleCat R.

                                Equations
                                  Instances For

                                    Universe lifting as a functor on FGModuleCat.

                                    Equations
                                      Instances For

                                        Universe lifting is fully faithful.

                                        Equations
                                          Instances For
                                            instance FGModuleCat.instFiniteHom (K : Type u) [Field K] (V W : FGModuleCat K) :
                                            @[simp]
                                            theorem FGModuleCat.ihom_obj (K : Type u) [Field K] (V W : FGModuleCat K) :

                                            The dual module is the dual in the rigid monoidal category FGModuleCat K.

                                            Equations
                                              Instances For
                                                @[simp]

                                                The evaluation morphism is given by the contraction map.

                                                Equations
                                                  Instances For
                                                    @[simp]

                                                    @[simp]-normal form of FGModuleCatEvaluation_apply, where the carriers have been unfolded.

                                                    @[simp] lemmas for LinearMap.comp and categorical identities.