Documentation

Mathlib.Algebra.Category.Grp.Preadditive

The category of additive commutative groups is preadditive. #

instance AddCommGrp.instAddHom {M N : AddCommGrp} :
Add (M N)
Equations
    @[simp]
    theorem AddCommGrp.hom_add {M N : AddCommGrp} (f g : M N) :
    Equations
      @[simp]
      Equations
        @[simp]
        theorem AddCommGrp.hom_nsmul {M N : AddCommGrp} (n : ) (f : M N) :
        Hom.hom (n f) = n Hom.hom f
        instance AddCommGrp.instNegHom {M N : AddCommGrp} :
        Neg (M N)
        Equations
          @[simp]
          theorem AddCommGrp.hom_neg {M N : AddCommGrp} (f : M N) :
          instance AddCommGrp.instSubHom {M N : AddCommGrp} :
          Sub (M N)
          Equations
            @[simp]
            theorem AddCommGrp.hom_sub {M N : AddCommGrp} (f g : M N) :
            Equations
              @[simp]
              theorem AddCommGrp.hom_zsmul {M N : AddCommGrp} (n : ) (f : M N) :
              Hom.hom (n f) = n Hom.hom f
              def AddCommGrp.homAddEquiv {M N : AddCommGrp} :
              (M N) ≃+ (M →+ N)

              AddCommGrp.Hom.hom bundled as an additive equivalence.

              Equations
                Instances For