Yoneda embeddings #
This file defines a few Yoneda embeddings for the category of commutative groups.
@[simp]
@[simp]
@[simp]
The CommGrp
-valued coyoneda embedding composed with the forgetful functor is the usual
coyoneda embedding.
Equations
Instances For
The AddCommGrp
-valued coyoneda embedding composed with the forgetful functor is the usual
coyoneda embedding.
Equations
Instances For
@[simp]
theorem
CommGrp.coyonedaForget_inv_app_app
(X : CommGrpᵒᵖ)
(X✝ : CommGrp)
(a✝ : (CategoryTheory.coyoneda.obj X).obj X✝)
:
@[simp]
theorem
AddCommGrp.coyonedaForget_hom_app_app_hom
(X : AddCommGrpᵒᵖ)
(X✝ : AddCommGrp)
(a✝ :
((coyoneda.comp
((CategoryTheory.Functor.whiskeringRight AddCommGrp AddCommGrp (Type u_1)).obj
(CategoryTheory.forget AddCommGrp))).obj
X).obj
X✝)
:
@[simp]
theorem
AddCommGrp.coyonedaForget_inv_app_app
(X : AddCommGrpᵒᵖ)
(X✝ : AddCommGrp)
(a✝ : (CategoryTheory.coyoneda.obj X).obj X✝)
:
The Hom bifunctor sending a type X
and a commutative group G
to the commutative group
X → G
with pointwise operations.
This is also the coyoneda embedding of Type
into CommGrp
-valued presheaves of commutative
groups.
Equations
Instances For
The Hom bifunctor sending a type X
and a commutative group G
to the commutative group
X → G
with pointwise operations.
This is also the coyoneda embedding of Type
into AddCommGrp
-valued presheaves of commutative
groups.
Equations
Instances For
@[simp]
theorem
CommGrp.coyonedaType_obj_map
(X : Type uᵒᵖ)
{X✝ Y✝ : CommGrp}
(f : X✝ ⟶ Y✝)
:
(coyonedaType.obj X).map f = ofHom
(Pi.monoidHom fun (i : Opposite.unop X) => (Hom.hom f).comp (Pi.evalMonoidHom (fun (a : Opposite.unop X) => ↑X✝) i))
@[simp]
theorem
CommGrp.coyonedaType_map_app
{X✝ Y✝ : Type uᵒᵖ}
(f : X✝ ⟶ Y✝)
(G : CommGrp)
:
(coyonedaType.map f).app G = ofHom (Pi.monoidHom fun (i : Opposite.unop Y✝) => Pi.evalMonoidHom (fun (a : Opposite.unop X✝) => ↑G) (f.unop i))
@[simp]
@[simp]
@[simp]
theorem
AddCommGrp.coyonedaType_obj_map
(X : Type uᵒᵖ)
{X✝ Y✝ : AddCommGrp}
(f : X✝ ⟶ Y✝)
:
(coyonedaType.obj X).map f = ofHom
(Pi.addMonoidHom fun (i : Opposite.unop X) =>
(Hom.hom f).comp (Pi.evalAddMonoidHom (fun (a : Opposite.unop X) => ↑X✝) i))
@[simp]
theorem
AddCommGrp.coyonedaType_map_app
{X✝ Y✝ : Type uᵒᵖ}
(f : X✝ ⟶ Y✝)
(G : AddCommGrp)
:
(coyonedaType.map f).app G = ofHom
(Pi.addMonoidHom fun (i : Opposite.unop Y✝) => Pi.evalAddMonoidHom (fun (a : Opposite.unop X✝) => ↑G) (f.unop i))