Documentation

Mathlib.Algebra.Category.Grp.Yoneda

Yoneda embeddings #

This file defines a few Yoneda embeddings for the category of commutative groups.

@[simp]
@[simp]
theorem CommGrp.coyoneda_map_app {X✝ Y✝ : CommGrpᵒᵖ} (f : X✝ Y✝) (N : CommGrp) :
@[simp]
theorem CommGrp.coyoneda_obj_map (M : CommGrpᵒᵖ) {X✝ Y✝ : CommGrp} (f : X✝ Y✝) :
@[simp]
theorem AddCommGrp.coyoneda_map_app {X✝ Y✝ : AddCommGrpᵒᵖ} (f : X✝ Y✝) (N : AddCommGrp) :
@[simp]
theorem CommGrp.coyoneda_obj_obj_coe (M : CommGrpᵒᵖ) (N : CommGrp) :
((coyoneda.obj M).obj N) = ((Opposite.unop M) →* N)

The CommGrp-valued coyoneda embedding composed with the forgetful functor is the usual coyoneda embedding.

Equations
    Instances For

      The AddCommGrp-valued coyoneda embedding composed with the forgetful functor is the usual coyoneda embedding.

      Equations
        Instances For
          @[simp]

          The Hom bifunctor sending a type X and a commutative group G to the commutative group X → G with pointwise operations.

          This is also the coyoneda embedding of Type into CommGrp-valued presheaves of commutative groups.

          Equations
            Instances For

              The Hom bifunctor sending a type X and a commutative group G to the commutative group X → G with pointwise operations.

              This is also the coyoneda embedding of Type into AddCommGrp-valued presheaves of commutative groups.

              Equations
                Instances For
                  @[simp]
                  theorem CommGrp.coyonedaType_obj_map (X : Type uᵒᵖ) {X✝ Y✝ : CommGrp} (f : X✝ Y✝) :
                  (coyonedaType.obj X).map f = ofHom (Pi.monoidHom fun (i : Opposite.unop X) => (Hom.hom f).comp (Pi.evalMonoidHom (fun (a : Opposite.unop X) => X✝) i))
                  @[simp]
                  theorem CommGrp.coyonedaType_map_app {X✝ Y✝ : Type uᵒᵖ} (f : X✝ Y✝) (G : CommGrp) :
                  (coyonedaType.map f).app G = ofHom (Pi.monoidHom fun (i : Opposite.unop Y✝) => Pi.evalMonoidHom (fun (a : Opposite.unop X✝) => G) (f.unop i))
                  @[simp]
                  theorem CommGrp.coyonedaType_obj_obj_coe (X : Type uᵒᵖ) (G : CommGrp) :
                  ((coyonedaType.obj X).obj G) = (Opposite.unop XG)
                  @[simp]
                  @[simp]
                  theorem AddCommGrp.coyonedaType_obj_map (X : Type uᵒᵖ) {X✝ Y✝ : AddCommGrp} (f : X✝ Y✝) :
                  (coyonedaType.obj X).map f = ofHom (Pi.addMonoidHom fun (i : Opposite.unop X) => (Hom.hom f).comp (Pi.evalAddMonoidHom (fun (a : Opposite.unop X) => X✝) i))
                  @[simp]
                  theorem AddCommGrp.coyonedaType_map_app {X✝ Y✝ : Type uᵒᵖ} (f : X✝ Y✝) (G : AddCommGrp) :
                  (coyonedaType.map f).app G = ofHom (Pi.addMonoidHom fun (i : Opposite.unop Y✝) => Pi.evalAddMonoidHom (fun (a : Opposite.unop X✝) => G) (f.unop i))