The exterior powers as functors on the category of modules #
In this file, given M : ModuleCat R
and n : ℕ
, we define M.exteriorPower n : ModuleCat R
,
and this extends to a functor ModuleCat.exteriorPower.functor : ModuleCat R ⥤ ModuleCat R
.
Equations
The postcomposition of an alternating map by a linear map.
Equations
Instances For
Constructor for elements in M.exteriorPower n
when M
is an object of ModuleCat R
and n : ℕ
.
Equations
Instances For
The morphism M.exteriorPower n ⟶ N
induced by an alternating map.
Equations
Instances For
The morphism M.exteriorPower n ⟶ N.exteriorPower n
induced by a morphism M ⟶ N
in ModuleCat R
.
Equations
Instances For
The functor ModuleCat R ⥤ ModuleCat R
which sends a module to its
n
th exterior power.
Equations
Instances For
The isomorphism M.exteriorPower 0 ≅ ModuleCat.of R R
.
Equations
Instances For
The isomorphism M.exteriorPower 1 ≅ M
.
Equations
Instances For
The natural isomorphism M.exteriorPower 0 ≅ ModuleCat.of R R
.
Equations
Instances For
The natural isomorphism M.exteriorPower 1 ≅ M
.