Documentation

Mathlib.Algebra.Category.ModuleCat.ExteriorPower

The exterior powers as functors on the category of modules #

In this file, given M : ModuleCat R and n : ℕ, we define M.exteriorPower n : ModuleCat R, and this extends to a functor ModuleCat.exteriorPower.functor : ModuleCat R ⥤ ModuleCat R.

def ModuleCat.exteriorPower {R : Type u} [CommRing R] (M : ModuleCat R) (n : ) :

The exterior power of an object in ModuleCat R.

Equations
    Instances For
      def ModuleCat.AlternatingMap {R : Type u} [CommRing R] (M : ModuleCat R) (N : ModuleCat R) (n : ) :
      Type (max (max v u v) 0)

      The type of n-alternating maps on M : ModuleCat R to N : ModuleCat R.

      Equations
        Instances For
          instance ModuleCat.instFunLikeAlternatingMapForallFinCarrier {R : Type u} [CommRing R] (M : ModuleCat R) (N : ModuleCat R) (n : ) :
          FunLike (M.AlternatingMap N n) (Fin nM) N
          Equations
            theorem ModuleCat.AlternatingMap.ext {R : Type u} [CommRing R] {M : ModuleCat R} {N : ModuleCat R} {n : } {φ φ' : M.AlternatingMap N n} (h : ∀ (x : Fin nM), φ x = φ' x) :
            φ = φ'
            theorem ModuleCat.AlternatingMap.ext_iff {R : Type u} [CommRing R] {M : ModuleCat R} {N : ModuleCat R} {n : } {φ φ' : M.AlternatingMap N n} :
            φ = φ' ∀ (x : Fin nM), φ x = φ' x
            def ModuleCat.AlternatingMap.postcomp {R : Type u} [CommRing R] {M : ModuleCat R} {N : ModuleCat R} {n : } (φ : M.AlternatingMap N n) {N' : ModuleCat R} (g : N N') :

            The postcomposition of an alternating map by a linear map.

            Equations
              Instances For
                @[simp]
                theorem ModuleCat.AlternatingMap.postcomp_apply {R : Type u} [CommRing R] {M : ModuleCat R} {N : ModuleCat R} {n : } (φ : M.AlternatingMap N n) {N' : ModuleCat R} (g : N N') (x : Fin nM) :

                Constructor for elements in M.exteriorPower n when M is an object of ModuleCat R and n : ℕ.

                Equations
                  Instances For
                    theorem ModuleCat.exteriorPower.hom_ext {R : Type u} [CommRing R] {M : ModuleCat R} {N : ModuleCat R} {n : } {f g : M.exteriorPower n N} (h : mk.postcomp f = mk.postcomp g) :
                    f = g
                    theorem ModuleCat.exteriorPower.hom_ext_iff {R : Type u} [CommRing R] {M : ModuleCat R} {N : ModuleCat R} {n : } {f g : M.exteriorPower n N} :
                    noncomputable def ModuleCat.exteriorPower.desc {R : Type u} [CommRing R] {M : ModuleCat R} {n : } {N : ModuleCat R} (φ : M.AlternatingMap N n) :

                    The morphism M.exteriorPower n ⟶ N induced by an alternating map.

                    Equations
                      Instances For
                        @[simp]
                        theorem ModuleCat.exteriorPower.desc_mk {R : Type u} [CommRing R] {M : ModuleCat R} {n : } {N : ModuleCat R} (φ : M.AlternatingMap N n) (x : Fin nM) :
                        noncomputable def ModuleCat.exteriorPower.map {R : Type u} [CommRing R] {M N : ModuleCat R} (f : M N) (n : ) :

                        The morphism M.exteriorPower n ⟶ N.exteriorPower n induced by a morphism M ⟶ N in ModuleCat R.

                        Equations
                          Instances For
                            @[simp]
                            theorem ModuleCat.exteriorPower.map_mk {R : Type u} [CommRing R] {M N : ModuleCat R} (f : M N) {n : } (x : Fin nM) :

                            The functor ModuleCat R ⥤ ModuleCat R which sends a module to its nth exterior power.

                            Equations
                              Instances For
                                @[simp]
                                @[simp]
                                theorem ModuleCat.exteriorPower.functor_map (R : Type u) [CommRing R] (n : ) {X✝ Y✝ : ModuleCat R} (f : X✝ Y✝) :
                                (functor R n).map f = map f n
                                noncomputable def ModuleCat.exteriorPower.iso₀ {R : Type u} [CommRing R] (M : ModuleCat R) :

                                The isomorphism M.exteriorPower 0 ≅ ModuleCat.of R R.

                                Equations
                                  Instances For
                                    noncomputable def ModuleCat.exteriorPower.iso₁ {R : Type u} [CommRing R] (M : ModuleCat R) :

                                    The isomorphism M.exteriorPower 1 ≅ M.

                                    Equations
                                      Instances For

                                        The natural isomorphism M.exteriorPower 0 ≅ ModuleCat.of R R.

                                        Equations
                                          Instances For

                                            The natural isomorphism M.exteriorPower 1 ≅ M.

                                            Equations
                                              Instances For