Documentation

Mathlib.Algebra.Category.ModuleCat.Presheaf.Monoidal

The monoidal category structure on presheaves of modules #

Given a presheaf of commutative rings R : Cᵒᵖ ⥤ CommRingCat, we construct the monoidal category structure on the category of presheaves of modules PresheafOfModules (R ⋙ forget₂ _ _). The tensor product M₁ ⊗ M₂ is defined as the presheaf of modules which sends X : Cᵒᵖ to M₁.obj X ⊗ M₂.obj X.

Notes #

This contribution was created as part of the AIM workshop "Formalizing algebraic geometry" in June 2024.

@[simp]
noncomputable def PresheafOfModules.Monoidal.tensorHom {C : Type u_1} [CategoryTheory.Category.{u_2, u_1} C] {R : CategoryTheory.Functor Cᵒᵖ CommRingCat} {M₁ M₂ M₃ M₄ : PresheafOfModules (R.comp (CategoryTheory.forget₂ CommRingCat RingCat))} (f : M₁ M₂) (g : M₃ M₄) :
tensorObj M₁ M₃ tensorObj M₂ M₄

The tensor product of two morphisms of presheaves of modules.

Equations
    Instances For