Pushforward of presheaves of modules #
If F : C ⥤ D
, the precomposition F.op ⋙ _
induces a functor from presheaves
over D
to presheaves over C
. When R : Dᵒᵖ ⥤ RingCat
, we define the
induced functor pushforward₀ : PresheafOfModules.{v} R ⥤ PresheafOfModules.{v} (F.op ⋙ R)
on presheaves of modules.
In case we have a morphism of presheaves of rings S ⟶ F.op ⋙ R
, we also construct
a functor pushforward : PresheafOfModules.{v} R ⥤ PresheafOfModules.{v} S
.
Implementation of pushforward₀
.
Equations
Instances For
The pushforward functor on presheaves of modules for a functor F : C ⥤ D
and
R : Dᵒᵖ ⥤ RingCat
. On the underlying presheaves of abelian groups, it is induced
by the precomposition with F.op
.
Equations
Instances For
The pushforward of presheaves of modules commutes with the forgetful functor to presheaves of abelian groups.
Equations
Instances For
The pushforward functor PresheafOfModules R ⥤ PresheafOfModules S
induced by
a morphism of presheaves of rings S ⟶ F.op ⋙ R
.
Equations
Instances For
The pushforward of presheaves of modules commutes with the forgetful functor to presheaves of abelian groups.
Equations
Instances For
@[simp]
-normal form of pushforward_obj_map_apply
.
@[simp]
-normal form of pushforward_map_app_apply
.