Documentation

Mathlib.Algebra.Category.MonCat.Yoneda

Yoneda embeddings #

This file defines a few Yoneda embeddings for the category of commutative monoids.

@[simp]
@[simp]
theorem CommMonCat.coyoneda_obj_map (M : CommMonCatᵒᵖ) {X✝ Y✝ : CommMonCat} (f : X✝ Y✝) :
@[simp]
theorem CommMonCat.coyoneda_map_app {X✝ Y✝ : CommMonCatᵒᵖ} (f : X✝ Y✝) (N : CommMonCat) :

The CommMonCat-valued coyoneda embedding composed with the forgetful functor is the usual coyoneda embedding.

Equations
    Instances For

      The AddCommMonCat-valued coyoneda embedding composed with the forgetful functor is the usual coyoneda embedding.

      Equations
        Instances For

          The Hom bifunctor sending a type X and a commutative monoid M to the commutative monoid X → M with pointwise operations.

          This is also the coyoneda embedding of Type into CommMonCat-valued presheaves of commutative monoids.

          Equations
            Instances For

              The Hom bifunctor sending a type X and a commutative monoid M to the commutative monoid X → M with pointwise operations.

              This is also the coyoneda embedding of Type into AddCommMonCat-valued presheaves of commutative monoids.

              Equations
                Instances For
                  @[simp]
                  theorem AddCommMonCat.coyonedaType_map_app {X✝ Y✝ : Type uᵒᵖ} (f : X✝ Y✝) (N : AddCommMonCat) :
                  (coyonedaType.map f).app N = ofHom (Pi.addMonoidHom fun (i : Opposite.unop Y✝) => Pi.evalAddMonoidHom (fun (a : Opposite.unop X✝) => N) (f.unop i))
                  @[simp]
                  theorem CommMonCat.coyonedaType_obj_map (X : Type uᵒᵖ) {X✝ Y✝ : CommMonCat} (f : X✝ Y✝) :
                  (coyonedaType.obj X).map f = ofHom (Pi.monoidHom fun (i : Opposite.unop X) => (Hom.hom f).comp (Pi.evalMonoidHom (fun (a : Opposite.unop X) => X✝) i))
                  @[simp]
                  theorem AddCommMonCat.coyonedaType_obj_map (X : Type uᵒᵖ) {X✝ Y✝ : AddCommMonCat} (f : X✝ Y✝) :
                  (coyonedaType.obj X).map f = ofHom (Pi.addMonoidHom fun (i : Opposite.unop X) => (Hom.hom f).comp (Pi.evalAddMonoidHom (fun (a : Opposite.unop X) => X✝) i))
                  @[simp]
                  @[simp]
                  theorem CommMonCat.coyonedaType_map_app {X✝ Y✝ : Type uᵒᵖ} (f : X✝ Y✝) (N : CommMonCat) :
                  (coyonedaType.map f).app N = ofHom (Pi.monoidHom fun (i : Opposite.unop Y✝) => Pi.evalMonoidHom (fun (a : Opposite.unop X✝) => N) (f.unop i))