Yoneda embeddings #
This file defines a few Yoneda embeddings for the category of commutative monoids.
@[simp]
theorem
AddCommMonCat.coyoneda_map_app
{X✝ Y✝ : AddCommMonCatᵒᵖ}
(f : X✝ ⟶ Y✝)
(N : AddCommMonCat)
:
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
theorem
AddCommMonCat.coyoneda_obj_map
(M : AddCommMonCatᵒᵖ)
{X✝ Y✝ : AddCommMonCat}
(f : X✝ ⟶ Y✝)
:
The CommMonCat
-valued coyoneda embedding composed with the forgetful functor is the usual
coyoneda embedding.
Equations
Instances For
The AddCommMonCat
-valued coyoneda embedding composed with the forgetful functor is the usual
coyoneda embedding.
Equations
Instances For
@[simp]
theorem
CommMonCat.coyonedaForget_hom_app_app_hom
(X : CommMonCatᵒᵖ)
(X✝ : CommMonCat)
(a✝ :
((coyoneda.comp
((CategoryTheory.Functor.whiskeringRight CommMonCat CommMonCat (Type u_1)).obj
(CategoryTheory.forget CommMonCat))).obj
X).obj
X✝)
:
@[simp]
theorem
CommMonCat.coyonedaForget_inv_app_app
(X : CommMonCatᵒᵖ)
(X✝ : CommMonCat)
(a✝ : (CategoryTheory.coyoneda.obj X).obj X✝)
:
@[simp]
theorem
AddCommMonCat.coyonedaForget_inv_app_app
(X : AddCommMonCatᵒᵖ)
(X✝ : AddCommMonCat)
(a✝ : (CategoryTheory.coyoneda.obj X).obj X✝)
:
@[simp]
theorem
AddCommMonCat.coyonedaForget_hom_app_app_hom
(X : AddCommMonCatᵒᵖ)
(X✝ : AddCommMonCat)
(a✝ :
((coyoneda.comp
((CategoryTheory.Functor.whiskeringRight AddCommMonCat AddCommMonCat (Type u_1)).obj
(CategoryTheory.forget AddCommMonCat))).obj
X).obj
X✝)
:
The Hom bifunctor sending a type X
and a commutative monoid M
to the commutative monoid
X → M
with pointwise operations.
This is also the coyoneda embedding of Type
into CommMonCat
-valued presheaves of commutative
monoids.
Equations
Instances For
The Hom bifunctor sending a type X
and a commutative monoid M
to the commutative monoid
X → M
with pointwise operations.
This is also the coyoneda embedding of Type
into AddCommMonCat
-valued presheaves of commutative
monoids.
Equations
Instances For
@[simp]
theorem
AddCommMonCat.coyonedaType_map_app
{X✝ Y✝ : Type uᵒᵖ}
(f : X✝ ⟶ Y✝)
(N : AddCommMonCat)
:
(coyonedaType.map f).app N = ofHom
(Pi.addMonoidHom fun (i : Opposite.unop Y✝) => Pi.evalAddMonoidHom (fun (a : Opposite.unop X✝) => ↑N) (f.unop i))
@[simp]
theorem
CommMonCat.coyonedaType_obj_map
(X : Type uᵒᵖ)
{X✝ Y✝ : CommMonCat}
(f : X✝ ⟶ Y✝)
:
(coyonedaType.obj X).map f = ofHom
(Pi.monoidHom fun (i : Opposite.unop X) => (Hom.hom f).comp (Pi.evalMonoidHom (fun (a : Opposite.unop X) => ↑X✝) i))
@[simp]
@[simp]
theorem
AddCommMonCat.coyonedaType_obj_map
(X : Type uᵒᵖ)
{X✝ Y✝ : AddCommMonCat}
(f : X✝ ⟶ Y✝)
:
(coyonedaType.obj X).map f = ofHom
(Pi.addMonoidHom fun (i : Opposite.unop X) =>
(Hom.hom f).comp (Pi.evalAddMonoidHom (fun (a : Opposite.unop X) => ↑X✝) i))
@[simp]
@[simp]
theorem
CommMonCat.coyonedaType_map_app
{X✝ Y✝ : Type uᵒᵖ}
(f : X✝ ⟶ Y✝)
(N : CommMonCat)
:
(coyonedaType.map f).app N = ofHom (Pi.monoidHom fun (i : Opposite.unop Y✝) => Pi.evalMonoidHom (fun (a : Opposite.unop X✝) => ↑N) (f.unop i))