Documentation

Mathlib.Algebra.Category.Ring.Adjunctions

Adjunctions in CommRingCat #

Main results #

The free functor Type u ⥤ CommRingCat sending a type X to the multivariable (commutative) polynomials with variables x : X.

Equations
    Instances For
      @[simp]
      theorem CommRingCat.free_obj_coe {α : Type u} :

      The free-forgetful adjunction for commutative rings.

      Equations
        Instances For
          @[simp]
          theorem CommRingCat.coyoneda_obj_map (n : Type vᵒᵖ) {R S : CommRingCat} (φ : R S) :
          (coyoneda.obj n).map φ = ofHom (Pi.ringHom fun (x : Opposite.unop n) => (Hom.hom φ).comp (Pi.evalRingHom (fun (a : Opposite.unop n) => R) x))
          @[simp]
          @[simp]
          theorem CommRingCat.coyoneda_map_app {m n : Type vᵒᵖ} (f : m n) (R : CommRingCat) :
          (coyoneda.map f).app R = ofHom (Pi.ringHom fun (x : Opposite.unop n) => Pi.evalRingHom (fun (a : Opposite.unop m) => R) (f.unop x))

          The adjunction Hom_{CRing}(Fun(n, R), S) ≃ Fun(n, Hom_{CRing}(R, S)).

          Equations
            Instances For

              If n is a singleton, Hom(n, -) is the identity in CommRingCat.

              Equations
                Instances For
                  @[simp]
                  theorem CommRingCat.coyonedaUnique_inv_app_hom_apply {n : Type v} [Unique n] (X : CommRingCat) (a✝ : X) (a✝¹ : Opposite.unop (Opposite.op n)) :
                  (Hom.hom (coyonedaUnique.inv.app X)) a✝ a✝¹ = a✝

                  The monoid algebra functor CommGrp ⥤ R-Alg given by G ↦ R[G].

                  Equations
                    Instances For

                      The adjunction G ↦ R[G] and S ↦ Sˣ between CommGrp and R-Alg.

                      Equations
                        Instances For