Documentation

Mathlib.Algebra.Category.Ring.Under.Basic

Under CommRingCat #

In this file we provide basic API for Under R when R : CommRingCat. Under R is (equivalent to) the category of commutative R-algebras. For not necessarily commutative algebras, use AlgCat R instead.

def CommRingCat.toAlgHom {R : CommRingCat} {A B : CategoryTheory.Under R} (f : A B) :
A.right →ₐ[R] B.right

Turn a morphism in Under R into an algebra homomorphism.

Equations
    Instances For

      Make an object of Under R from an R-algebra.

      Equations
        Instances For
          @[simp]
          theorem CommRingCat.mkUnder_hom (R : CommRingCat) (A : Type u) [CommRing A] [Algebra (↑R) A] :
          (R.mkUnder A).hom = ofHom (algebraMap (↑R) A)
          theorem CommRingCat.mkUnder_right (R : CommRingCat) (A : Type u) [CommRing A] [Algebra (↑R) A] :
          (R.mkUnder A).right = of A
          def AlgHom.toUnder {R : CommRingCat} {A B : Type u} [CommRing A] [CommRing B] [Algebra (↑R) A] [Algebra (↑R) B] (f : A →ₐ[R] B) :

          Make a morphism in Under R from an algebra map.

          Equations
            Instances For
              @[simp]
              theorem AlgHom.toUnder_right {R : CommRingCat} {A B : Type u} [CommRing A] [CommRing B] [Algebra (↑R) A] [Algebra (↑R) B] (f : A →ₐ[R] B) (a : A) :
              @[simp]
              theorem AlgHom.toUnder_comp {R : CommRingCat} {A B C : Type u} [CommRing A] [CommRing B] [CommRing C] [Algebra (↑R) A] [Algebra (↑R) B] [Algebra (↑R) C] (f : A →ₐ[R] B) (g : B →ₐ[R] C) :
              def AlgEquiv.toUnder {R : CommRingCat} {A B : Type u} [CommRing A] [CommRing B] [Algebra (↑R) A] [Algebra (↑R) B] (f : A ≃ₐ[R] B) :

              Make an isomorphism in Under R from an algebra isomorphism.

              Equations
                Instances For
                  @[simp]
                  theorem AlgEquiv.toUnder_hom_right_apply {R : CommRingCat} {A B : Type u} [CommRing A] [CommRing B] [Algebra (↑R) A] [Algebra (↑R) B] (f : A ≃ₐ[R] B) (a : A) :
                  @[simp]
                  theorem AlgEquiv.toUnder_inv_right_apply {R : CommRingCat} {A B : Type u} [CommRing A] [CommRing B] [Algebra (↑R) A] [Algebra (↑R) B] (f : A ≃ₐ[R] B) (b : B) :
                  @[simp]
                  theorem AlgEquiv.toUnder_trans {R : CommRingCat} {A B C : Type u} [CommRing A] [CommRing B] [CommRing C] [Algebra (↑R) A] [Algebra (↑R) B] [Algebra (↑R) C] (f : A ≃ₐ[R] B) (g : B ≃ₐ[R] C) :

                  The base change functor A ↦ S ⊗[R] A.

                  Equations
                    Instances For
                      @[simp]
                      theorem CommRingCat.tensorProd_map_right (R S : CommRingCat) [Algebra R S] {X✝ Y✝ : CategoryTheory.Under R} (f : X✝ Y✝) :

                      The natural isomorphism S ⊗[R] A ≅ pushout A.hom (algebraMap R S) in Under S.

                      Equations
                        Instances For

                          A ↦ S ⊗[R] A is naturally isomorphic to A ↦ pushout A.hom (algebraMap R S).

                          Equations
                            Instances For