Documentation
Mathlib
.
Algebra
.
EuclideanDomain
.
Field
Search
return to top
source
Imports
Init
Mathlib.Algebra.EuclideanDomain.Defs
Mathlib.Algebra.Field.Defs
Mathlib.Algebra.GroupWithZero.Units.Basic
Imported by
Field
.
toEuclideanDomain
Field
.
mod_eq
Field
.
gcd_eq
Field
.
gcd_zero_eq
Field
.
gcd_eq_of_ne
Instances for Euclidean domains
#
Field.toEuclideanDomain
: shows that any field is a Euclidean domain.
source
@[instance 100]
instance
Field
.
toEuclideanDomain
{
K
:
Type
u_1}
[
Field
K
]
:
EuclideanDomain
K
Equations
source
@[simp]
theorem
Field
.
mod_eq
{
K
:
Type
u_1}
[
Field
K
]
(
a
b
:
K
)
:
a
%
b
=
a
-
a
*
b
/
b
source
@[simp]
theorem
Field
.
gcd_eq
{
K
:
Type
u_1}
[
Field
K
]
[
DecidableEq
K
]
(
a
b
:
K
)
:
EuclideanDomain.gcd
a
b
=
if
a
=
0
then
b
else
a
source
theorem
Field
.
gcd_zero_eq
{
K
:
Type
u_1}
[
Field
K
]
[
DecidableEq
K
]
(
b
:
K
)
:
EuclideanDomain.gcd
0
b
=
b
source
theorem
Field
.
gcd_eq_of_ne
{
K
:
Type
u_1}
[
Field
K
]
[
DecidableEq
K
]
{
a
:
K
}
(
ha
:
a
≠
0
)
(
b
:
K
)
:
EuclideanDomain.gcd
a
b
=
a