Documentation

Mathlib.Algebra.Free

Free constructions #

Main definitions #

inductive FreeAddMagma (α : Type u) :

If α is a type, then FreeAddMagma α is the free additive magma generated by α. This is an additive magma equipped with a function FreeAddMagma.of : α → FreeAddMagma α which has the following universal property: if M is any magma, and f : α → M is any function, then this function is the composite of FreeAddMagma.of and a unique additive homomorphism FreeAddMagma.lift f : FreeAddMagma α →ₙ+ M.

A typical element of FreeAddMagma α is a formal non-associative sum of elements of α. For example if x and y are terms of type α then x + ((y + y) + x) is a "typical" element of FreeAddMagma α. One can think of FreeAddMagma α as the type of binary trees with leaves labelled by α. In general, no pair of distinct elements in FreeAddMagma α will commute.

Instances For
    instance instDecidableEqFreeAddMagma {α✝ : Type u_1} [DecidableEq α✝] :
    Equations
      inductive FreeMagma (α : Type u) :

      If α is a type, then FreeMagma α is the free magma generated by α. This is a magma equipped with a function FreeMagma.of : α → FreeMagma α which has the following universal property: if M is any magma, and f : α → M is any function, then this function is the composite of FreeMagma.of and a unique multiplicative homomorphism FreeMagma.lift f : FreeMagma α →ₙ* M.

      A typical element of FreeMagma α is a formal non-associative product of elements of α. For example if x and y are terms of type α then x * ((y * y) * x) is a "typical" element of FreeMagma α. One can think of FreeMagma α as the type of binary trees with leaves labelled by α. In general, no pair of distinct elements in FreeMagma α will commute.

      Instances For
        instance instDecidableEqFreeMagma {α✝ : Type u_1} [DecidableEq α✝] :
        Equations
          Equations
            instance FreeMagma.instMul {α : Type u} :
            Equations
              instance FreeAddMagma.instAdd {α : Type u} :
              Equations
                @[simp]
                theorem FreeMagma.mul_eq {α : Type u} (x y : FreeMagma α) :
                x.mul y = x * y
                @[simp]
                theorem FreeAddMagma.add_eq {α : Type u} (x y : FreeAddMagma α) :
                x.add y = x + y
                def FreeMagma.recOnMul {α : Type u} {C : FreeMagma αSort l} (x : FreeMagma α) (ih1 : (x : α) → C (of x)) (ih2 : (x y : FreeMagma α) → C xC yC (x * y)) :
                C x

                Recursor for FreeMagma using x * y instead of FreeMagma.mul x y.

                Equations
                  Instances For
                    def FreeAddMagma.recOnAdd {α : Type u} {C : FreeAddMagma αSort l} (x : FreeAddMagma α) (ih1 : (x : α) → C (of x)) (ih2 : (x y : FreeAddMagma α) → C xC yC (x + y)) :
                    C x

                    Recursor for FreeAddMagma using x + y instead of FreeAddMagma.add x y.

                    Equations
                      Instances For
                        theorem FreeMagma.hom_ext {α : Type u} {β : Type v} [Mul β] {f g : FreeMagma α →ₙ* β} (h : f of = g of) :
                        f = g
                        theorem FreeAddMagma.hom_ext {α : Type u} {β : Type v} [Add β] {f g : FreeAddMagma α →ₙ+ β} (h : f of = g of) :
                        f = g
                        theorem FreeMagma.hom_ext_iff {α : Type u} {β : Type v} [Mul β] {f g : FreeMagma α →ₙ* β} :
                        f = g f of = g of
                        theorem FreeAddMagma.hom_ext_iff {α : Type u} {β : Type v} [Add β] {f g : FreeAddMagma α →ₙ+ β} :
                        f = g f of = g of
                        def FreeMagma.liftAux {α : Type u} {β : Type v} [Mul β] (f : αβ) :
                        FreeMagma αβ

                        Lifts a function α → β to a magma homomorphism FreeMagma α → β given a magma β.

                        Equations
                          Instances For
                            def FreeAddMagma.liftAux {α : Type u} {β : Type v} [Add β] (f : αβ) :
                            FreeAddMagma αβ

                            Lifts a function α → β to an additive magma homomorphism FreeAddMagma α → β given an additive magma β.

                            Equations
                              Instances For
                                def FreeMagma.lift {α : Type u} {β : Type v} [Mul β] :
                                (αβ) (FreeMagma α →ₙ* β)

                                The universal property of the free magma expressing its adjointness.

                                Equations
                                  Instances For
                                    def FreeAddMagma.lift {α : Type u} {β : Type v} [Add β] :
                                    (αβ) (FreeAddMagma α →ₙ+ β)

                                    The universal property of the free additive magma expressing its adjointness.

                                    Equations
                                      Instances For
                                        @[simp]
                                        theorem FreeMagma.lift_symm_apply {α : Type u} {β : Type v} [Mul β] (F : FreeMagma α →ₙ* β) (a✝ : α) :
                                        lift.symm F a✝ = (F of) a✝
                                        @[simp]
                                        theorem FreeAddMagma.lift_symm_apply {α : Type u} {β : Type v} [Add β] (F : FreeAddMagma α →ₙ+ β) (a✝ : α) :
                                        lift.symm F a✝ = (F of) a✝
                                        @[simp]
                                        theorem FreeMagma.lift_of {α : Type u} {β : Type v} [Mul β] (f : αβ) (x : α) :
                                        (lift f) (of x) = f x
                                        @[simp]
                                        theorem FreeAddMagma.lift_of {α : Type u} {β : Type v} [Add β] (f : αβ) (x : α) :
                                        (lift f) (of x) = f x
                                        @[simp]
                                        theorem FreeMagma.lift_comp_of {α : Type u} {β : Type v} [Mul β] (f : αβ) :
                                        (lift f) of = f
                                        @[simp]
                                        theorem FreeAddMagma.lift_comp_of {α : Type u} {β : Type v} [Add β] (f : αβ) :
                                        (lift f) of = f
                                        @[simp]
                                        theorem FreeMagma.lift_comp_of' {α : Type u} {β : Type v} [Mul β] (f : FreeMagma α →ₙ* β) :
                                        lift (f of) = f
                                        @[simp]
                                        theorem FreeAddMagma.lift_comp_of' {α : Type u} {β : Type v} [Add β] (f : FreeAddMagma α →ₙ+ β) :
                                        lift (f of) = f
                                        def FreeMagma.map {α : Type u} {β : Type v} (f : αβ) :

                                        The unique magma homomorphism FreeMagma α →ₙ* FreeMagma β that sends each of x to of (f x).

                                        Equations
                                          Instances For
                                            def FreeAddMagma.map {α : Type u} {β : Type v} (f : αβ) :

                                            The unique additive magma homomorphism FreeAddMagma α → FreeAddMagma β that sends each of x to of (f x).

                                            Equations
                                              Instances For
                                                @[simp]
                                                theorem FreeMagma.map_of {α : Type u} {β : Type v} (f : αβ) (x : α) :
                                                (map f) (of x) = of (f x)
                                                @[simp]
                                                theorem FreeAddMagma.map_of {α : Type u} {β : Type v} (f : αβ) (x : α) :
                                                (map f) (of x) = of (f x)
                                                def FreeMagma.recOnPure {α : Type u} {C : FreeMagma αSort l} (x : FreeMagma α) (ih1 : (x : α) → C (pure x)) (ih2 : (x y : FreeMagma α) → C xC yC (x * y)) :
                                                C x

                                                Recursor on FreeMagma using pure instead of of.

                                                Equations
                                                  Instances For
                                                    def FreeAddMagma.recOnPure {α : Type u} {C : FreeAddMagma αSort l} (x : FreeAddMagma α) (ih1 : (x : α) → C (pure x)) (ih2 : (x y : FreeAddMagma α) → C xC yC (x + y)) :
                                                    C x

                                                    Recursor on FreeAddMagma using pure instead of of.

                                                    Equations
                                                      Instances For
                                                        @[simp]
                                                        theorem FreeMagma.map_pure {α β : Type u} (f : αβ) (x : α) :
                                                        f <$> pure x = pure (f x)
                                                        @[simp]
                                                        theorem FreeAddMagma.map_pure {α β : Type u} (f : αβ) (x : α) :
                                                        f <$> pure x = pure (f x)
                                                        @[simp]
                                                        theorem FreeMagma.map_mul' {α β : Type u} (f : αβ) (x y : FreeMagma α) :
                                                        f <$> (x * y) = f <$> x * f <$> y
                                                        @[simp]
                                                        theorem FreeAddMagma.map_add' {α β : Type u} (f : αβ) (x y : FreeAddMagma α) :
                                                        f <$> (x + y) = f <$> x + f <$> y
                                                        @[simp]
                                                        theorem FreeMagma.pure_bind {α β : Type u} (f : αFreeMagma β) (x : α) :
                                                        pure x >>= f = f x
                                                        @[simp]
                                                        theorem FreeAddMagma.pure_bind {α β : Type u} (f : αFreeAddMagma β) (x : α) :
                                                        pure x >>= f = f x
                                                        @[simp]
                                                        theorem FreeMagma.mul_bind {α β : Type u} (f : αFreeMagma β) (x y : FreeMagma α) :
                                                        x * y >>= f = (x >>= f) * (y >>= f)
                                                        @[simp]
                                                        theorem FreeAddMagma.add_bind {α β : Type u} (f : αFreeAddMagma β) (x y : FreeAddMagma α) :
                                                        x + y >>= f = (x >>= f) + (y >>= f)
                                                        @[simp]
                                                        theorem FreeMagma.pure_seq {α β : Type u} {f : αβ} {x : FreeMagma α} :
                                                        pure f <*> x = f <$> x
                                                        @[simp]
                                                        theorem FreeAddMagma.pure_seq {α β : Type u} {f : αβ} {x : FreeAddMagma α} :
                                                        pure f <*> x = f <$> x
                                                        @[simp]
                                                        theorem FreeMagma.mul_seq {α β : Type u} {f g : FreeMagma (αβ)} {x : FreeMagma α} :
                                                        f * g <*> x = (f <*> x) * (g <*> x)
                                                        @[simp]
                                                        theorem FreeAddMagma.add_seq {α β : Type u} {f g : FreeAddMagma (αβ)} {x : FreeAddMagma α} :
                                                        f + g <*> x = (f <*> x) + (g <*> x)
                                                        def FreeMagma.traverse {m : Type u → Type u} [Applicative m] {α β : Type u} (F : αm β) :
                                                        FreeMagma αm (FreeMagma β)

                                                        FreeMagma is traversable.

                                                        Equations
                                                          Instances For
                                                            def FreeAddMagma.traverse {m : Type u → Type u} [Applicative m] {α β : Type u} (F : αm β) :

                                                            FreeAddMagma is traversable.

                                                            Equations
                                                              Instances For
                                                                @[simp]
                                                                theorem FreeMagma.traverse_pure {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) (x : α) :
                                                                traverse F (pure x) = pure <$> F x
                                                                @[simp]
                                                                theorem FreeAddMagma.traverse_pure {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) (x : α) :
                                                                traverse F (pure x) = pure <$> F x
                                                                @[simp]
                                                                theorem FreeMagma.traverse_pure' {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) :
                                                                traverse F pure = fun (x : α) => pure <$> F x
                                                                @[simp]
                                                                theorem FreeAddMagma.traverse_pure' {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) :
                                                                traverse F pure = fun (x : α) => pure <$> F x
                                                                @[simp]
                                                                theorem FreeMagma.traverse_mul {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) (x y : FreeMagma α) :
                                                                traverse F (x * y) = (fun (x1 x2 : FreeMagma β) => x1 * x2) <$> traverse F x <*> traverse F y
                                                                @[simp]
                                                                theorem FreeAddMagma.traverse_add {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) (x y : FreeAddMagma α) :
                                                                traverse F (x + y) = (fun (x1 x2 : FreeAddMagma β) => x1 + x2) <$> traverse F x <*> traverse F y
                                                                @[simp]
                                                                theorem FreeMagma.traverse_mul' {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) :
                                                                Function.comp (traverse F) HMul.hMul = fun (x y : FreeMagma α) => (fun (x1 x2 : FreeMagma β) => x1 * x2) <$> traverse F x <*> traverse F y
                                                                @[simp]
                                                                theorem FreeAddMagma.traverse_add' {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) :
                                                                Function.comp (traverse F) HAdd.hAdd = fun (x y : FreeAddMagma α) => (fun (x1 x2 : FreeAddMagma β) => x1 + x2) <$> traverse F x <*> traverse F y
                                                                @[simp]
                                                                theorem FreeMagma.traverse_eq {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) (x : FreeMagma α) :
                                                                @[simp]
                                                                theorem FreeAddMagma.traverse_eq {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) (x : FreeAddMagma α) :
                                                                @[deprecated "Use map_pure and seq_pure" (since := "2025-05-21")]
                                                                theorem FreeMagma.mul_map_seq {α : Type u} (x y : FreeMagma α) :
                                                                (fun (x1 x2 : FreeMagma α) => x1 * x2) <$> x <*> y = x * y
                                                                @[deprecated "Use map_pure and seq_pure" (since := "2025-05-21")]
                                                                theorem FreeAddMagma.add_map_seq {α : Type u} (x y : FreeAddMagma α) :
                                                                (fun (x1 x2 : FreeAddMagma α) => x1 + x2) <$> x <*> y = x + y
                                                                def FreeMagma.repr {α : Type u} [Repr α] :

                                                                Representation of an element of a free magma.

                                                                Equations
                                                                  Instances For

                                                                    Representation of an element of a free additive magma.

                                                                    Equations
                                                                      Instances For
                                                                        instance instReprFreeMagma {α : Type u} [Repr α] :
                                                                        Equations
                                                                          instance instReprFreeAddMagma {α : Type u} [Repr α] :
                                                                          Equations
                                                                            def FreeMagma.length {α : Type u} :
                                                                            FreeMagma α

                                                                            Length of an element of a free magma.

                                                                            Equations
                                                                              Instances For

                                                                                Length of an element of a free additive magma.

                                                                                Equations
                                                                                  Instances For
                                                                                    theorem FreeMagma.length_pos {α : Type u} (x : FreeMagma α) :
                                                                                    0 < x.length

                                                                                    The length of an element of a free magma is positive.

                                                                                    theorem FreeAddMagma.length_pos {α : Type u} (x : FreeAddMagma α) :
                                                                                    0 < x.length

                                                                                    The length of an element of a free additive magma is positive.

                                                                                    inductive AddMagma.AssocRel (α : Type u) [Add α] :
                                                                                    ααProp

                                                                                    Associativity relations for an additive magma.

                                                                                    Instances For
                                                                                      inductive Magma.AssocRel (α : Type u) [Mul α] :
                                                                                      ααProp

                                                                                      Associativity relations for a magma.

                                                                                      Instances For
                                                                                        def Magma.AssocQuotient (α : Type u) [Mul α] :

                                                                                        Semigroup quotient of a magma.

                                                                                        Equations
                                                                                          Instances For
                                                                                            def AddMagma.FreeAddSemigroup (α : Type u) [Add α] :

                                                                                            Additive semigroup quotient of an additive magma.

                                                                                            Equations
                                                                                              Instances For
                                                                                                theorem Magma.AssocQuotient.quot_mk_assoc {α : Type u} [Mul α] (x y z : α) :
                                                                                                Quot.mk (AssocRel α) (x * y * z) = Quot.mk (AssocRel α) (x * (y * z))
                                                                                                theorem AddMagma.FreeAddSemigroup.quot_mk_assoc {α : Type u} [Add α] (x y z : α) :
                                                                                                Quot.mk (AssocRel α) (x + y + z) = Quot.mk (AssocRel α) (x + (y + z))
                                                                                                theorem Magma.AssocQuotient.quot_mk_assoc_left {α : Type u} [Mul α] (x y z w : α) :
                                                                                                Quot.mk (AssocRel α) (x * (y * z * w)) = Quot.mk (AssocRel α) (x * (y * (z * w)))
                                                                                                theorem AddMagma.FreeAddSemigroup.quot_mk_assoc_left {α : Type u} [Add α] (x y z w : α) :
                                                                                                Quot.mk (AssocRel α) (x + (y + z + w)) = Quot.mk (AssocRel α) (x + (y + (z + w)))

                                                                                                Embedding from magma to its free semigroup.

                                                                                                Equations
                                                                                                  Instances For

                                                                                                    Embedding from additive magma to its free additive semigroup.

                                                                                                    Equations
                                                                                                      Instances For
                                                                                                        theorem Magma.AssocQuotient.induction_on {α : Type u} [Mul α] {C : AssocQuotient αProp} (x : AssocQuotient α) (ih : ∀ (x : α), C (of x)) :
                                                                                                        C x
                                                                                                        theorem AddMagma.FreeAddSemigroup.induction_on {α : Type u} [Add α] {C : FreeAddSemigroup αProp} (x : FreeAddSemigroup α) (ih : ∀ (x : α), C (of x)) :
                                                                                                        C x
                                                                                                        theorem Magma.AssocQuotient.hom_ext {α : Type u} [Mul α] {β : Type v} [Semigroup β] {f g : AssocQuotient α →ₙ* β} (h : f.comp of = g.comp of) :
                                                                                                        f = g
                                                                                                        theorem AddMagma.FreeAddSemigroup.hom_ext {α : Type u} [Add α] {β : Type v} [AddSemigroup β] {f g : FreeAddSemigroup α →ₙ+ β} (h : f.comp of = g.comp of) :
                                                                                                        f = g
                                                                                                        theorem AddMagma.FreeAddSemigroup.hom_ext_iff {α : Type u} [Add α] {β : Type v} [AddSemigroup β] {f g : FreeAddSemigroup α →ₙ+ β} :
                                                                                                        f = g f.comp of = g.comp of
                                                                                                        theorem Magma.AssocQuotient.hom_ext_iff {α : Type u} [Mul α] {β : Type v} [Semigroup β] {f g : AssocQuotient α →ₙ* β} :
                                                                                                        f = g f.comp of = g.comp of
                                                                                                        def Magma.AssocQuotient.lift {α : Type u} [Mul α] {β : Type v} [Semigroup β] :

                                                                                                        Lifts a magma homomorphism α → β to a semigroup homomorphism Magma.AssocQuotient α → β given a semigroup β.

                                                                                                        Equations
                                                                                                          Instances For

                                                                                                            Lifts an additive magma homomorphism α → β to an additive semigroup homomorphism AddMagma.AssocQuotient α → β given an additive semigroup β.

                                                                                                            Equations
                                                                                                              Instances For
                                                                                                                @[simp]
                                                                                                                theorem Magma.AssocQuotient.lift_symm_apply {α : Type u} [Mul α] {β : Type v} [Semigroup β] (f : AssocQuotient α →ₙ* β) :
                                                                                                                @[simp]
                                                                                                                @[simp]
                                                                                                                theorem Magma.AssocQuotient.lift_of {α : Type u} [Mul α] {β : Type v} [Semigroup β] (f : α →ₙ* β) (x : α) :
                                                                                                                (lift f) (of x) = f x
                                                                                                                @[simp]
                                                                                                                theorem AddMagma.FreeAddSemigroup.lift_of {α : Type u} [Add α] {β : Type v} [AddSemigroup β] (f : α →ₙ+ β) (x : α) :
                                                                                                                (lift f) (of x) = f x
                                                                                                                @[simp]
                                                                                                                theorem Magma.AssocQuotient.lift_comp_of {α : Type u} [Mul α] {β : Type v} [Semigroup β] (f : α →ₙ* β) :
                                                                                                                (lift f).comp of = f
                                                                                                                @[simp]
                                                                                                                theorem AddMagma.FreeAddSemigroup.lift_comp_of {α : Type u} [Add α] {β : Type v} [AddSemigroup β] (f : α →ₙ+ β) :
                                                                                                                (lift f).comp of = f
                                                                                                                @[simp]
                                                                                                                theorem Magma.AssocQuotient.lift_comp_of' {α : Type u} [Mul α] {β : Type v} [Semigroup β] (f : AssocQuotient α →ₙ* β) :
                                                                                                                lift (f.comp of) = f
                                                                                                                @[simp]
                                                                                                                theorem AddMagma.FreeAddSemigroup.lift_comp_of' {α : Type u} [Add α] {β : Type v} [AddSemigroup β] (f : FreeAddSemigroup α →ₙ+ β) :
                                                                                                                lift (f.comp of) = f
                                                                                                                def Magma.AssocQuotient.map {α : Type u} [Mul α] {β : Type v} [Mul β] (f : α →ₙ* β) :

                                                                                                                From a magma homomorphism α →ₙ* β to a semigroup homomorphism Magma.AssocQuotient α →ₙ* Magma.AssocQuotient β.

                                                                                                                Equations
                                                                                                                  Instances For

                                                                                                                    From an additive magma homomorphism α → β to an additive semigroup homomorphism AddMagma.AssocQuotient α → AddMagma.AssocQuotient β.

                                                                                                                    Equations
                                                                                                                      Instances For
                                                                                                                        @[simp]
                                                                                                                        theorem Magma.AssocQuotient.map_of {α : Type u} [Mul α] {β : Type v} [Mul β] (f : α →ₙ* β) (x : α) :
                                                                                                                        (map f) (of x) = of (f x)
                                                                                                                        @[simp]
                                                                                                                        theorem AddMagma.FreeAddSemigroup.map_of {α : Type u} [Add α] {β : Type v} [Add β] (f : α →ₙ+ β) (x : α) :
                                                                                                                        (map f) (of x) = of (f x)
                                                                                                                        structure FreeAddSemigroup (α : Type u) :

                                                                                                                        If α is a type, then FreeAddSemigroup α is the free additive semigroup generated by α. This is an additive semigroup equipped with a function FreeAddSemigroup.of : α → FreeAddSemigroup α which has the following universal property: if M is any additive semigroup, and f : α → M is any function, then this function is the composite of FreeAddSemigroup.of and a unique semigroup homomorphism FreeAddSemigroup.lift f : FreeAddSemigroup α →ₙ+ M.

                                                                                                                        A typical element of FreeAddSemigroup α is a nonempty formal sum of elements of α. For example if x and y are terms of type α then x + y + y + x is a "typical" element of FreeAddSemigroup α. In particular if α is empty then FreeAddSemigroup α is also empty, and if α has one term then FreeAddSemigroup α is isomorphic to ℕ+. If α has two or more terms then FreeAddSemigroup α is not commutative. One can think of FreeAddSemigroup α as the type of nonempty lists of α, with addition given by concatenation.

                                                                                                                        • head : α

                                                                                                                          The head of the element

                                                                                                                        • tail : List α

                                                                                                                          The tail of the element

                                                                                                                        Instances For
                                                                                                                          structure FreeSemigroup (α : Type u) :

                                                                                                                          If α is a type, then FreeSemigroup α is the free semigroup generated by α. This is a semigroup equipped with a function FreeSemigroup.of : α → FreeSemigroup α which has the following universal property: if M is any semigroup, and f : α → M is any function, then this function is the composite of FreeSemigroup.of and a unique semigroup homomorphism FreeSemigroup.lift f : FreeSemigroup α →ₙ* M.

                                                                                                                          A typical element of FreeSemigroup α is a nonempty formal product of elements of α. For example if x and y are terms of type α then x * y * y * x is a "typical" element of FreeSemigroup α. In particular if α is empty then FreeSemigroup α is also empty, and if α has one term then FreeSemigroup α is isomorphic to Multiplicative ℕ+. If α has two or more terms then FreeSemigroup α is not commutative. One can think of FreeSemigroup α as the type of nonempty lists of α, with multiplication given by concatenation.

                                                                                                                          • head : α

                                                                                                                            The head of the element

                                                                                                                          • tail : List α

                                                                                                                            The tail of the element

                                                                                                                          Instances For
                                                                                                                            theorem FreeSemigroup.ext_iff {α : Type u} {x y : FreeSemigroup α} :
                                                                                                                            x = y x.head = y.head x.tail = y.tail
                                                                                                                            theorem FreeAddSemigroup.ext_iff {α : Type u} {x y : FreeAddSemigroup α} :
                                                                                                                            x = y x.head = y.head x.tail = y.tail
                                                                                                                            theorem FreeAddSemigroup.ext {α : Type u} {x y : FreeAddSemigroup α} (head : x.head = y.head) (tail : x.tail = y.tail) :
                                                                                                                            x = y
                                                                                                                            theorem FreeSemigroup.ext {α : Type u} {x y : FreeSemigroup α} (head : x.head = y.head) (tail : x.tail = y.tail) :
                                                                                                                            x = y
                                                                                                                            @[simp]
                                                                                                                            theorem FreeSemigroup.head_mul {α : Type u} (x y : FreeSemigroup α) :
                                                                                                                            (x * y).head = x.head
                                                                                                                            @[simp]
                                                                                                                            theorem FreeAddSemigroup.head_add {α : Type u} (x y : FreeAddSemigroup α) :
                                                                                                                            (x + y).head = x.head
                                                                                                                            @[simp]
                                                                                                                            theorem FreeSemigroup.tail_mul {α : Type u} (x y : FreeSemigroup α) :
                                                                                                                            (x * y).tail = x.tail ++ y.head :: y.tail
                                                                                                                            @[simp]
                                                                                                                            theorem FreeAddSemigroup.tail_add {α : Type u} (x y : FreeAddSemigroup α) :
                                                                                                                            (x + y).tail = x.tail ++ y.head :: y.tail
                                                                                                                            @[simp]
                                                                                                                            theorem FreeSemigroup.mk_mul_mk {α : Type u} (x y : α) (L1 L2 : List α) :
                                                                                                                            { head := x, tail := L1 } * { head := y, tail := L2 } = { head := x, tail := L1 ++ y :: L2 }
                                                                                                                            @[simp]
                                                                                                                            theorem FreeAddSemigroup.mk_add_mk {α : Type u} (x y : α) (L1 L2 : List α) :
                                                                                                                            { head := x, tail := L1 } + { head := y, tail := L2 } = { head := x, tail := L1 ++ y :: L2 }
                                                                                                                            def FreeSemigroup.of {α : Type u} (x : α) :

                                                                                                                            The embedding α → FreeSemigroup α.

                                                                                                                            Equations
                                                                                                                              Instances For
                                                                                                                                def FreeAddSemigroup.of {α : Type u} (x : α) :

                                                                                                                                The embedding α → FreeAddSemigroup α.

                                                                                                                                Equations
                                                                                                                                  Instances For
                                                                                                                                    @[simp]
                                                                                                                                    theorem FreeSemigroup.of_head {α : Type u} (x : α) :
                                                                                                                                    (of x).head = x
                                                                                                                                    @[simp]
                                                                                                                                    theorem FreeAddSemigroup.of_tail {α : Type u} (x : α) :
                                                                                                                                    (of x).tail = []
                                                                                                                                    @[simp]
                                                                                                                                    theorem FreeSemigroup.of_tail {α : Type u} (x : α) :
                                                                                                                                    (of x).tail = []
                                                                                                                                    @[simp]
                                                                                                                                    theorem FreeAddSemigroup.of_head {α : Type u} (x : α) :
                                                                                                                                    (of x).head = x

                                                                                                                                    Length of an element of free semigroup.

                                                                                                                                    Equations
                                                                                                                                      Instances For

                                                                                                                                        Length of an element of free additive semigroup

                                                                                                                                        Equations
                                                                                                                                          Instances For
                                                                                                                                            @[simp]
                                                                                                                                            theorem FreeSemigroup.length_mul {α : Type u} (x y : FreeSemigroup α) :
                                                                                                                                            (x * y).length = x.length + y.length
                                                                                                                                            @[simp]
                                                                                                                                            theorem FreeAddSemigroup.length_add {α : Type u} (x y : FreeAddSemigroup α) :
                                                                                                                                            (x + y).length = x.length + y.length
                                                                                                                                            @[simp]
                                                                                                                                            theorem FreeSemigroup.length_of {α : Type u} (x : α) :
                                                                                                                                            (of x).length = 1
                                                                                                                                            @[simp]
                                                                                                                                            theorem FreeAddSemigroup.length_of {α : Type u} (x : α) :
                                                                                                                                            (of x).length = 1
                                                                                                                                            def FreeSemigroup.recOnMul {α : Type u} {C : FreeSemigroup αSort l} (x : FreeSemigroup α) (ih1 : (x : α) → C (of x)) (ih2 : (x : α) → (y : FreeSemigroup α) → C (of x)C yC (of x * y)) :
                                                                                                                                            C x

                                                                                                                                            Recursor for free semigroup using of and *.

                                                                                                                                            Equations
                                                                                                                                              Instances For
                                                                                                                                                def FreeAddSemigroup.recOnAdd {α : Type u} {C : FreeAddSemigroup αSort l} (x : FreeAddSemigroup α) (ih1 : (x : α) → C (of x)) (ih2 : (x : α) → (y : FreeAddSemigroup α) → C (of x)C yC (of x + y)) :
                                                                                                                                                C x

                                                                                                                                                Recursor for free additive semigroup using of and +.

                                                                                                                                                Equations
                                                                                                                                                  Instances For
                                                                                                                                                    theorem FreeSemigroup.hom_ext {α : Type u} {β : Type v} [Mul β] {f g : FreeSemigroup α →ₙ* β} (h : f of = g of) :
                                                                                                                                                    f = g
                                                                                                                                                    theorem FreeAddSemigroup.hom_ext {α : Type u} {β : Type v} [Add β] {f g : FreeAddSemigroup α →ₙ+ β} (h : f of = g of) :
                                                                                                                                                    f = g
                                                                                                                                                    theorem FreeAddSemigroup.hom_ext_iff {α : Type u} {β : Type v} [Add β] {f g : FreeAddSemigroup α →ₙ+ β} :
                                                                                                                                                    f = g f of = g of
                                                                                                                                                    theorem FreeSemigroup.hom_ext_iff {α : Type u} {β : Type v} [Mul β] {f g : FreeSemigroup α →ₙ* β} :
                                                                                                                                                    f = g f of = g of
                                                                                                                                                    def FreeSemigroup.lift {α : Type u} {β : Type v} [Semigroup β] :
                                                                                                                                                    (αβ) (FreeSemigroup α →ₙ* β)

                                                                                                                                                    Lifts a function α → β to a semigroup homomorphism FreeSemigroup α → β given a semigroup β.

                                                                                                                                                    Equations
                                                                                                                                                      Instances For
                                                                                                                                                        def FreeAddSemigroup.lift {α : Type u} {β : Type v} [AddSemigroup β] :
                                                                                                                                                        (αβ) (FreeAddSemigroup α →ₙ+ β)

                                                                                                                                                        Lifts a function α → β to an additive semigroup homomorphism FreeAddSemigroup α → β given an additive semigroup β.

                                                                                                                                                        Equations
                                                                                                                                                          Instances For
                                                                                                                                                            @[simp]
                                                                                                                                                            theorem FreeSemigroup.lift_symm_apply {α : Type u} {β : Type v} [Semigroup β] (f : FreeSemigroup α →ₙ* β) (a✝ : α) :
                                                                                                                                                            lift.symm f a✝ = (f of) a✝
                                                                                                                                                            @[simp]
                                                                                                                                                            theorem FreeAddSemigroup.lift_symm_apply {α : Type u} {β : Type v} [AddSemigroup β] (f : FreeAddSemigroup α →ₙ+ β) (a✝ : α) :
                                                                                                                                                            lift.symm f a✝ = (f of) a✝
                                                                                                                                                            @[simp]
                                                                                                                                                            theorem FreeSemigroup.lift_of {α : Type u} {β : Type v} [Semigroup β] (f : αβ) (x : α) :
                                                                                                                                                            (lift f) (of x) = f x
                                                                                                                                                            @[simp]
                                                                                                                                                            theorem FreeAddSemigroup.lift_of {α : Type u} {β : Type v} [AddSemigroup β] (f : αβ) (x : α) :
                                                                                                                                                            (lift f) (of x) = f x
                                                                                                                                                            @[simp]
                                                                                                                                                            theorem FreeSemigroup.lift_comp_of {α : Type u} {β : Type v} [Semigroup β] (f : αβ) :
                                                                                                                                                            (lift f) of = f
                                                                                                                                                            @[simp]
                                                                                                                                                            theorem FreeAddSemigroup.lift_comp_of {α : Type u} {β : Type v} [AddSemigroup β] (f : αβ) :
                                                                                                                                                            (lift f) of = f
                                                                                                                                                            @[simp]
                                                                                                                                                            theorem FreeSemigroup.lift_comp_of' {α : Type u} {β : Type v} [Semigroup β] (f : FreeSemigroup α →ₙ* β) :
                                                                                                                                                            lift (f of) = f
                                                                                                                                                            @[simp]
                                                                                                                                                            theorem FreeAddSemigroup.lift_comp_of' {α : Type u} {β : Type v} [AddSemigroup β] (f : FreeAddSemigroup α →ₙ+ β) :
                                                                                                                                                            lift (f of) = f
                                                                                                                                                            theorem FreeSemigroup.lift_of_mul {α : Type u} {β : Type v} [Semigroup β] (f : αβ) (x : α) (y : FreeSemigroup α) :
                                                                                                                                                            (lift f) (of x * y) = f x * (lift f) y
                                                                                                                                                            theorem FreeAddSemigroup.lift_of_add {α : Type u} {β : Type v} [AddSemigroup β] (f : αβ) (x : α) (y : FreeAddSemigroup α) :
                                                                                                                                                            (lift f) (of x + y) = f x + (lift f) y
                                                                                                                                                            def FreeSemigroup.map {α : Type u} {β : Type v} (f : αβ) :

                                                                                                                                                            The unique semigroup homomorphism that sends of x to of (f x).

                                                                                                                                                            Equations
                                                                                                                                                              Instances For
                                                                                                                                                                def FreeAddSemigroup.map {α : Type u} {β : Type v} (f : αβ) :

                                                                                                                                                                The unique additive semigroup homomorphism that sends of x to of (f x).

                                                                                                                                                                Equations
                                                                                                                                                                  Instances For
                                                                                                                                                                    @[simp]
                                                                                                                                                                    theorem FreeSemigroup.map_of {α : Type u} {β : Type v} (f : αβ) (x : α) :
                                                                                                                                                                    (map f) (of x) = of (f x)
                                                                                                                                                                    @[simp]
                                                                                                                                                                    theorem FreeAddSemigroup.map_of {α : Type u} {β : Type v} (f : αβ) (x : α) :
                                                                                                                                                                    (map f) (of x) = of (f x)
                                                                                                                                                                    @[simp]
                                                                                                                                                                    theorem FreeSemigroup.length_map {α : Type u} {β : Type v} (f : αβ) (x : FreeSemigroup α) :
                                                                                                                                                                    ((map f) x).length = x.length
                                                                                                                                                                    @[simp]
                                                                                                                                                                    theorem FreeAddSemigroup.length_map {α : Type u} {β : Type v} (f : αβ) (x : FreeAddSemigroup α) :
                                                                                                                                                                    ((map f) x).length = x.length
                                                                                                                                                                    def FreeSemigroup.recOnPure {α : Type u} {C : FreeSemigroup αSort l} (x : FreeSemigroup α) (ih1 : (x : α) → C (pure x)) (ih2 : (x : α) → (y : FreeSemigroup α) → C (pure x)C yC (pure x * y)) :
                                                                                                                                                                    C x

                                                                                                                                                                    Recursor that uses pure instead of of.

                                                                                                                                                                    Equations
                                                                                                                                                                      Instances For
                                                                                                                                                                        def FreeAddSemigroup.recOnPure {α : Type u} {C : FreeAddSemigroup αSort l} (x : FreeAddSemigroup α) (ih1 : (x : α) → C (pure x)) (ih2 : (x : α) → (y : FreeAddSemigroup α) → C (pure x)C yC (pure x + y)) :
                                                                                                                                                                        C x

                                                                                                                                                                        Recursor that uses pure instead of of.

                                                                                                                                                                        Equations
                                                                                                                                                                          Instances For
                                                                                                                                                                            @[simp]
                                                                                                                                                                            theorem FreeSemigroup.map_pure {α β : Type u} (f : αβ) (x : α) :
                                                                                                                                                                            f <$> pure x = pure (f x)
                                                                                                                                                                            @[simp]
                                                                                                                                                                            theorem FreeAddSemigroup.map_pure {α β : Type u} (f : αβ) (x : α) :
                                                                                                                                                                            f <$> pure x = pure (f x)
                                                                                                                                                                            @[simp]
                                                                                                                                                                            theorem FreeSemigroup.map_mul' {α β : Type u} (f : αβ) (x y : FreeSemigroup α) :
                                                                                                                                                                            f <$> (x * y) = f <$> x * f <$> y
                                                                                                                                                                            @[simp]
                                                                                                                                                                            theorem FreeAddSemigroup.map_add' {α β : Type u} (f : αβ) (x y : FreeAddSemigroup α) :
                                                                                                                                                                            f <$> (x + y) = f <$> x + f <$> y
                                                                                                                                                                            @[simp]
                                                                                                                                                                            theorem FreeSemigroup.pure_bind {α β : Type u} (f : αFreeSemigroup β) (x : α) :
                                                                                                                                                                            pure x >>= f = f x
                                                                                                                                                                            @[simp]
                                                                                                                                                                            theorem FreeAddSemigroup.pure_bind {α β : Type u} (f : αFreeAddSemigroup β) (x : α) :
                                                                                                                                                                            pure x >>= f = f x
                                                                                                                                                                            @[simp]
                                                                                                                                                                            theorem FreeSemigroup.mul_bind {α β : Type u} (f : αFreeSemigroup β) (x y : FreeSemigroup α) :
                                                                                                                                                                            x * y >>= f = (x >>= f) * (y >>= f)
                                                                                                                                                                            @[simp]
                                                                                                                                                                            theorem FreeAddSemigroup.add_bind {α β : Type u} (f : αFreeAddSemigroup β) (x y : FreeAddSemigroup α) :
                                                                                                                                                                            x + y >>= f = (x >>= f) + (y >>= f)
                                                                                                                                                                            @[simp]
                                                                                                                                                                            theorem FreeSemigroup.pure_seq {α β : Type u} {f : αβ} {x : FreeSemigroup α} :
                                                                                                                                                                            pure f <*> x = f <$> x
                                                                                                                                                                            @[simp]
                                                                                                                                                                            theorem FreeAddSemigroup.pure_seq {α β : Type u} {f : αβ} {x : FreeAddSemigroup α} :
                                                                                                                                                                            pure f <*> x = f <$> x
                                                                                                                                                                            @[simp]
                                                                                                                                                                            theorem FreeSemigroup.mul_seq {α β : Type u} {f g : FreeSemigroup (αβ)} {x : FreeSemigroup α} :
                                                                                                                                                                            f * g <*> x = (f <*> x) * (g <*> x)
                                                                                                                                                                            @[simp]
                                                                                                                                                                            theorem FreeAddSemigroup.add_seq {α β : Type u} {f g : FreeAddSemigroup (αβ)} {x : FreeAddSemigroup α} :
                                                                                                                                                                            f + g <*> x = (f <*> x) + (g <*> x)
                                                                                                                                                                            def FreeSemigroup.traverse {m : Type u → Type u} [Applicative m] {α β : Type u} (F : αm β) (x : FreeSemigroup α) :

                                                                                                                                                                            FreeSemigroup is traversable.

                                                                                                                                                                            Equations
                                                                                                                                                                              Instances For
                                                                                                                                                                                def FreeAddSemigroup.traverse {m : Type u → Type u} [Applicative m] {α β : Type u} (F : αm β) (x : FreeAddSemigroup α) :

                                                                                                                                                                                FreeAddSemigroup is traversable.

                                                                                                                                                                                Equations
                                                                                                                                                                                  Instances For
                                                                                                                                                                                    @[simp]
                                                                                                                                                                                    theorem FreeSemigroup.traverse_pure {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) (x : α) :
                                                                                                                                                                                    traverse F (pure x) = pure <$> F x
                                                                                                                                                                                    @[simp]
                                                                                                                                                                                    theorem FreeAddSemigroup.traverse_pure {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) (x : α) :
                                                                                                                                                                                    traverse F (pure x) = pure <$> F x
                                                                                                                                                                                    @[simp]
                                                                                                                                                                                    theorem FreeSemigroup.traverse_pure' {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) :
                                                                                                                                                                                    traverse F pure = fun (x : α) => pure <$> F x
                                                                                                                                                                                    @[simp]
                                                                                                                                                                                    theorem FreeAddSemigroup.traverse_pure' {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) :
                                                                                                                                                                                    traverse F pure = fun (x : α) => pure <$> F x
                                                                                                                                                                                    @[simp]
                                                                                                                                                                                    theorem FreeSemigroup.traverse_mul {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) [LawfulApplicative m] (x y : FreeSemigroup α) :
                                                                                                                                                                                    traverse F (x * y) = (fun (x1 x2 : FreeSemigroup β) => x1 * x2) <$> traverse F x <*> traverse F y
                                                                                                                                                                                    @[simp]
                                                                                                                                                                                    theorem FreeAddSemigroup.traverse_add {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) [LawfulApplicative m] (x y : FreeAddSemigroup α) :
                                                                                                                                                                                    traverse F (x + y) = (fun (x1 x2 : FreeAddSemigroup β) => x1 + x2) <$> traverse F x <*> traverse F y
                                                                                                                                                                                    @[simp]
                                                                                                                                                                                    theorem FreeSemigroup.traverse_mul' {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) [LawfulApplicative m] :
                                                                                                                                                                                    Function.comp (traverse F) HMul.hMul = fun (x y : FreeSemigroup α) => (fun (x1 x2 : FreeSemigroup β) => x1 * x2) <$> traverse F x <*> traverse F y
                                                                                                                                                                                    @[simp]
                                                                                                                                                                                    theorem FreeAddSemigroup.traverse_add' {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) [LawfulApplicative m] :
                                                                                                                                                                                    Function.comp (traverse F) HAdd.hAdd = fun (x y : FreeAddSemigroup α) => (fun (x1 x2 : FreeAddSemigroup β) => x1 + x2) <$> traverse F x <*> traverse F y
                                                                                                                                                                                    @[simp]
                                                                                                                                                                                    theorem FreeSemigroup.traverse_eq {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) (x : FreeSemigroup α) :
                                                                                                                                                                                    @[simp]
                                                                                                                                                                                    theorem FreeAddSemigroup.traverse_eq {α β : Type u} {m : Type u → Type u} [Applicative m] (F : αm β) (x : FreeAddSemigroup α) :
                                                                                                                                                                                    @[deprecated "Use map_pure and seq_pure" (since := "2025-05-21")]
                                                                                                                                                                                    theorem FreeSemigroup.mul_map_seq {α : Type u} (x y : FreeSemigroup α) :
                                                                                                                                                                                    (fun (x1 x2 : FreeSemigroup α) => x1 * x2) <$> x <*> y = x * y
                                                                                                                                                                                    @[deprecated "Use map_pure and seq_pure" (since := "2025-05-21")]
                                                                                                                                                                                    theorem FreeAddSemigroup.add_map_seq {α : Type u} (x y : FreeAddSemigroup α) :
                                                                                                                                                                                    (fun (x1 x2 : FreeAddSemigroup α) => x1 + x2) <$> x <*> y = x + y

                                                                                                                                                                                    The canonical multiplicative morphism from FreeMagma α to FreeSemigroup α.

                                                                                                                                                                                    Equations
                                                                                                                                                                                      Instances For

                                                                                                                                                                                        The canonical additive morphism from FreeAddMagma α to FreeAddSemigroup α.

                                                                                                                                                                                        Equations
                                                                                                                                                                                          Instances For
                                                                                                                                                                                            theorem FreeMagma.toFreeSemigroup_map {α : Type u} {β : Type v} (f : αβ) (x : FreeMagma α) :

                                                                                                                                                                                            Isomorphism between Magma.AssocQuotient (FreeMagma α) and FreeSemigroup α.

                                                                                                                                                                                            Equations
                                                                                                                                                                                              Instances For

                                                                                                                                                                                                Isomorphism between AddMagma.AssocQuotient (FreeAddMagma α) and FreeAddSemigroup α.

                                                                                                                                                                                                Equations
                                                                                                                                                                                                  Instances For