Documentation

Mathlib.Algebra.Group.Finsupp

Additive monoid structure on ι →₀ M #

theorem Finsupp.apply_single {ι : Type u_1} {F : Type u_2} {M : Type u_3} {N : Type u_4} [Zero M] [Zero N] [FunLike F M N] [ZeroHomClass F M N] (e : F) (i : ι) (m : M) (b : ι) :
e ((single i m) b) = (single i (e m)) b
instance Finsupp.instAdd {ι : Type u_1} {M : Type u_3} [AddZeroClass M] :
Add (ι →₀ M)
Equations
    @[simp]
    theorem Finsupp.coe_add {ι : Type u_1} {M : Type u_3} [AddZeroClass M] (f g : ι →₀ M) :
    ⇑(f + g) = f + g
    theorem Finsupp.add_apply {ι : Type u_1} {M : Type u_3} [AddZeroClass M] (g₁ g₂ : ι →₀ M) (a : ι) :
    (g₁ + g₂) a = g₁ a + g₂ a
    theorem Finsupp.support_add {ι : Type u_1} {M : Type u_3} [AddZeroClass M] {g₁ g₂ : ι →₀ M} [DecidableEq ι] :
    (g₁ + g₂).support g₁.support g₂.support
    theorem Finsupp.support_add_eq {ι : Type u_1} {M : Type u_3} [AddZeroClass M] {g₁ g₂ : ι →₀ M} [DecidableEq ι] (h : Disjoint g₁.support g₂.support) :
    (g₁ + g₂).support = g₁.support g₂.support
    instance Finsupp.instAddZeroClass {ι : Type u_1} {M : Type u_3} [AddZeroClass M] :
    Equations
      noncomputable def Finsupp.addEquivFunOnFinite {M : Type u_3} [AddZeroClass M] {ι : Type u_8} [Finite ι] :
      (ι →₀ M) ≃+ (ιM)

      When ι is finite and M is an AddMonoid, then Finsupp.equivFunOnFinite gives an AddEquiv

      Equations
        Instances For
          noncomputable def AddEquiv.finsuppUnique {M : Type u_3} [AddZeroClass M] {ι : Type u_8} [Unique ι] :
          (ι →₀ M) ≃+ M

          AddEquiv between (ι →₀ M) and M, when ι has a unique element

          Equations
            Instances For
              @[simp]
              theorem AddEquiv.finsuppUnique_apply {M : Type u_3} [AddZeroClass M] {ι : Type u_8} [Unique ι] (v : ι →₀ M) :
              instance Finsupp.instIsCancelAdd {ι : Type u_1} {M : Type u_3} [AddZeroClass M] [IsCancelAdd M] :
              def Finsupp.applyAddHom {ι : Type u_1} {M : Type u_3} [AddZeroClass M] (a : ι) :
              (ι →₀ M) →+ M

              Evaluation of a function f : ι →₀ M at a point as an additive monoid homomorphism.

              See Finsupp.lapply in Mathlib/LinearAlgebra/Finsupp/Defs.lean for the stronger version as a linear map.

              Equations
                Instances For
                  @[simp]
                  theorem Finsupp.applyAddHom_apply {ι : Type u_1} {M : Type u_3} [AddZeroClass M] (a : ι) (g : ι →₀ M) :
                  (applyAddHom a) g = g a
                  noncomputable def Finsupp.coeFnAddHom {ι : Type u_1} {M : Type u_3} [AddZeroClass M] :
                  (ι →₀ M) →+ ιM

                  Coercion from a Finsupp to a function type is an AddMonoidHom.

                  Equations
                    Instances For
                      @[simp]
                      theorem Finsupp.coeFnAddHom_apply {ι : Type u_1} {M : Type u_3} [AddZeroClass M] (a✝ : ι →₀ M) (a : ι) :
                      coeFnAddHom a✝ a = a✝ a
                      theorem Finsupp.mapRange_add {ι : Type u_1} {M : Type u_3} {N : Type u_4} [AddZeroClass M] [AddZeroClass N] {f : MN} {hf : f 0 = 0} (hf' : ∀ (x y : M), f (x + y) = f x + f y) (v₁ v₂ : ι →₀ M) :
                      mapRange f hf (v₁ + v₂) = mapRange f hf v₁ + mapRange f hf v₂
                      theorem Finsupp.mapRange_add' {ι : Type u_1} {F : Type u_2} {M : Type u_3} {N : Type u_4} [AddZeroClass M] [AddZeroClass N] [FunLike F M N] [AddMonoidHomClass F M N] {f : F} (g₁ g₂ : ι →₀ M) :
                      mapRange f (g₁ + g₂) = mapRange f g₁ + mapRange f g₂
                      def Finsupp.embDomain.addMonoidHom {ι : Type u_1} {F : Type u_2} {M : Type u_3} [AddZeroClass M] (f : ι F) :
                      (ι →₀ M) →+ F →₀ M

                      Bundle Finsupp.embDomain f as an additive map from ι →₀ M to F →₀ M.

                      Equations
                        Instances For
                          @[simp]
                          theorem Finsupp.embDomain.addMonoidHom_apply {ι : Type u_1} {F : Type u_2} {M : Type u_3} [AddZeroClass M] (f : ι F) (v : ι →₀ M) :
                          @[simp]
                          theorem Finsupp.embDomain_add {ι : Type u_1} {F : Type u_2} {M : Type u_3} [AddZeroClass M] (f : ι F) (v w : ι →₀ M) :
                          embDomain f (v + w) = embDomain f v + embDomain f w
                          @[simp]
                          theorem Finsupp.single_add {ι : Type u_1} {M : Type u_3} [AddZeroClass M] (a : ι) (b₁ b₂ : M) :
                          single a (b₁ + b₂) = single a b₁ + single a b₂
                          theorem Finsupp.single_add_apply {ι : Type u_1} {M : Type u_3} [AddZeroClass M] (a : ι) (m₁ m₂ : M) (b : ι) :
                          (single a (m₁ + m₂)) b = (single a m₁) b + (single a m₂) b
                          theorem Finsupp.support_single_add {ι : Type u_1} {M : Type u_3} [AddZeroClass M] {a : ι} {b : M} {f : ι →₀ M} (ha : af.support) (hb : b 0) :
                          theorem Finsupp.support_add_single {ι : Type u_1} {M : Type u_3} [AddZeroClass M] {a : ι} {b : M} {f : ι →₀ M} (ha : af.support) (hb : b 0) :
                          def Finsupp.singleAddHom {ι : Type u_1} {M : Type u_3} [AddZeroClass M] (a : ι) :
                          M →+ ι →₀ M

                          Finsupp.single as an AddMonoidHom.

                          See Finsupp.lsingle in Mathlib/LinearAlgebra/Finsupp/Defs.lean for the stronger version as a linear map.

                          Equations
                            Instances For
                              @[simp]
                              theorem Finsupp.singleAddHom_apply {ι : Type u_1} {M : Type u_3} [AddZeroClass M] (a : ι) (b : M) :
                              theorem Finsupp.update_eq_single_add_erase {ι : Type u_1} {M : Type u_3} [AddZeroClass M] (f : ι →₀ M) (a : ι) (b : M) :
                              f.update a b = single a b + erase a f
                              theorem Finsupp.update_eq_erase_add_single {ι : Type u_1} {M : Type u_3} [AddZeroClass M] (f : ι →₀ M) (a : ι) (b : M) :
                              f.update a b = erase a f + single a b
                              theorem Finsupp.single_add_erase {ι : Type u_1} {M : Type u_3} [AddZeroClass M] (a : ι) (f : ι →₀ M) :
                              single a (f a) + erase a f = f
                              theorem Finsupp.erase_add_single {ι : Type u_1} {M : Type u_3} [AddZeroClass M] (a : ι) (f : ι →₀ M) :
                              erase a f + single a (f a) = f
                              @[simp]
                              theorem Finsupp.erase_add {ι : Type u_1} {M : Type u_3} [AddZeroClass M] (a : ι) (f f' : ι →₀ M) :
                              erase a (f + f') = erase a f + erase a f'
                              def Finsupp.eraseAddHom {ι : Type u_1} {M : Type u_3} [AddZeroClass M] (a : ι) :
                              (ι →₀ M) →+ ι →₀ M

                              Finsupp.erase as an AddMonoidHom.

                              Equations
                                Instances For
                                  @[simp]
                                  theorem Finsupp.eraseAddHom_apply {ι : Type u_1} {M : Type u_3} [AddZeroClass M] (a : ι) (f : ι →₀ M) :
                                  (eraseAddHom a) f = erase a f
                                  theorem Finsupp.induction {ι : Type u_1} {M : Type u_3} [AddZeroClass M] {motive : (ι →₀ M) → Prop} (f : ι →₀ M) (zero : motive 0) (single_add : ∀ (a : ι) (b : M) (f : ι →₀ M), af.supportb 0motive fmotive (single a b + f)) :
                                  motive f
                                  theorem Finsupp.induction₂ {ι : Type u_1} {M : Type u_3} [AddZeroClass M] {motive : (ι →₀ M) → Prop} (f : ι →₀ M) (zero : motive 0) (add_single : ∀ (a : ι) (b : M) (f : ι →₀ M), af.supportb 0motive fmotive (f + single a b)) :
                                  motive f
                                  theorem Finsupp.induction_linear {ι : Type u_1} {M : Type u_3} [AddZeroClass M] {motive : (ι →₀ M) → Prop} (f : ι →₀ M) (zero : motive 0) (add : ∀ (f g : ι →₀ M), motive fmotive gmotive (f + g)) (single : ∀ (a : ι) (b : M), motive (single a b)) :
                                  motive f
                                  theorem Finsupp.induction_on_max {ι : Type u_1} {M : Type u_3} [AddZeroClass M] [LinearOrder ι] {p : (ι →₀ M) → Prop} (f : ι →₀ M) (h0 : p 0) (ha : ∀ (a : ι) (b : M) (f : ι →₀ M), (∀ cf.support, c < a)b 0p fp (single a b + f)) :
                                  p f

                                  A finitely supported function can be built by adding up single a b for increasing a.

                                  The lemma induction_on_max₂ swaps the argument order in the sum.

                                  theorem Finsupp.induction_on_min {ι : Type u_1} {M : Type u_3} [AddZeroClass M] [LinearOrder ι] {p : (ι →₀ M) → Prop} (f : ι →₀ M) (h0 : p 0) (ha : ∀ (a : ι) (b : M) (f : ι →₀ M), (∀ cf.support, a < c)b 0p fp (single a b + f)) :
                                  p f

                                  A finitely supported function can be built by adding up single a b for decreasing a.

                                  The lemma induction_on_min₂ swaps the argument order in the sum.

                                  theorem Finsupp.induction_on_max₂ {ι : Type u_1} {M : Type u_3} [AddZeroClass M] [LinearOrder ι] {p : (ι →₀ M) → Prop} (f : ι →₀ M) (h0 : p 0) (ha : ∀ (a : ι) (b : M) (f : ι →₀ M), (∀ cf.support, c < a)b 0p fp (f + single a b)) :
                                  p f

                                  A finitely supported function can be built by adding up single a b for increasing a.

                                  The lemma induction_on_max swaps the argument order in the sum.

                                  theorem Finsupp.induction_on_min₂ {ι : Type u_1} {M : Type u_3} [AddZeroClass M] [LinearOrder ι] {p : (ι →₀ M) → Prop} (f : ι →₀ M) (h0 : p 0) (ha : ∀ (a : ι) (b : M) (f : ι →₀ M), (∀ cf.support, a < c)b 0p fp (f + single a b)) :
                                  p f

                                  A finitely supported function can be built by adding up single a b for decreasing a.

                                  The lemma induction_on_min swaps the argument order in the sum.

                                  instance Finsupp.instNatSMul {ι : Type u_1} {M : Type u_3} [AddMonoid M] :
                                  SMul (ι →₀ M)

                                  Note the general SMul instance for Finsupp doesn't apply as is not distributive unless F i's addition is commutative.

                                  Equations
                                    @[simp]
                                    theorem Finsupp.coe_nsmul {ι : Type u_1} {M : Type u_3} [AddMonoid M] (n : ) (f : ι →₀ M) :
                                    ⇑(n f) = n f
                                    theorem Finsupp.nsmul_apply {ι : Type u_1} {M : Type u_3} [AddMonoid M] (n : ) (f : ι →₀ M) (x : ι) :
                                    (n f) x = n f x
                                    instance Finsupp.instAddMonoid {ι : Type u_1} {M : Type u_3} [AddMonoid M] :
                                    Equations
                                      instance Finsupp.instAddCommMonoid {ι : Type u_1} {M : Type u_3} [AddCommMonoid M] :
                                      Equations
                                        theorem Finsupp.single_add_single_eq_single_add_single {ι : Type u_1} {M : Type u_3} [AddCommMonoid M] {k l m n : ι} {u v : M} (hu : u 0) (hv : v 0) :
                                        single k u + single l v = single m u + single n v k = m l = n u = v k = n l = m u + v = 0 k = l m = n
                                        instance Finsupp.instNeg {ι : Type u_1} {G : Type u_6} [NegZeroClass G] :
                                        Neg (ι →₀ G)
                                        Equations
                                          @[simp]
                                          theorem Finsupp.coe_neg {ι : Type u_1} {G : Type u_6} [NegZeroClass G] (g : ι →₀ G) :
                                          ⇑(-g) = -g
                                          theorem Finsupp.neg_apply {ι : Type u_1} {G : Type u_6} [NegZeroClass G] (g : ι →₀ G) (a : ι) :
                                          (-g) a = -g a
                                          theorem Finsupp.mapRange_neg {ι : Type u_1} {G : Type u_6} {H : Type u_7} [NegZeroClass G] [NegZeroClass H] {f : GH} {hf : f 0 = 0} (hf' : ∀ (x : G), f (-x) = -f x) (v : ι →₀ G) :
                                          mapRange f hf (-v) = -mapRange f hf v
                                          instance Finsupp.instSub {ι : Type u_1} {G : Type u_6} [SubNegZeroMonoid G] :
                                          Sub (ι →₀ G)
                                          Equations
                                            @[simp]
                                            theorem Finsupp.coe_sub {ι : Type u_1} {G : Type u_6} [SubNegZeroMonoid G] (g₁ g₂ : ι →₀ G) :
                                            ⇑(g₁ - g₂) = g₁ - g₂
                                            theorem Finsupp.sub_apply {ι : Type u_1} {G : Type u_6} [SubNegZeroMonoid G] (g₁ g₂ : ι →₀ G) (a : ι) :
                                            (g₁ - g₂) a = g₁ a - g₂ a
                                            theorem Finsupp.mapRange_sub {ι : Type u_1} {G : Type u_6} {H : Type u_7} [SubNegZeroMonoid G] [SubNegZeroMonoid H] {f : GH} {hf : f 0 = 0} (hf' : ∀ (x y : G), f (x - y) = f x - f y) (v₁ v₂ : ι →₀ G) :
                                            mapRange f hf (v₁ - v₂) = mapRange f hf v₁ - mapRange f hf v₂
                                            theorem Finsupp.mapRange_neg' {ι : Type u_1} {F : Type u_2} {G : Type u_6} {H : Type u_7} [AddGroup G] [SubtractionMonoid H] [FunLike F G H] [AddMonoidHomClass F G H] {f : F} (v : ι →₀ G) :
                                            mapRange f (-v) = -mapRange f v
                                            theorem Finsupp.mapRange_sub' {ι : Type u_1} {F : Type u_2} {G : Type u_6} {H : Type u_7} [AddGroup G] [SubtractionMonoid H] [FunLike F G H] [AddMonoidHomClass F G H] {f : F} (v₁ v₂ : ι →₀ G) :
                                            mapRange f (v₁ - v₂) = mapRange f v₁ - mapRange f v₂
                                            instance Finsupp.instIntSMul {ι : Type u_1} {G : Type u_6} [AddGroup G] :
                                            SMul (ι →₀ G)

                                            Note the general SMul instance for Finsupp doesn't apply as is not distributive unless F i's addition is commutative.

                                            Equations
                                              instance Finsupp.instAddGroup {ι : Type u_1} {G : Type u_6} [AddGroup G] :
                                              Equations
                                                @[simp]
                                                theorem Finsupp.support_neg {ι : Type u_1} {G : Type u_6} [AddGroup G] (f : ι →₀ G) :
                                                theorem Finsupp.support_sub {ι : Type u_1} {G : Type u_6} [AddGroup G] [DecidableEq ι] {f g : ι →₀ G} :
                                                theorem Finsupp.erase_eq_sub_single {ι : Type u_1} {G : Type u_6} [AddGroup G] (f : ι →₀ G) (a : ι) :
                                                erase a f = f - single a (f a)
                                                theorem Finsupp.update_eq_sub_add_single {ι : Type u_1} {G : Type u_6} [AddGroup G] (f : ι →₀ G) (a : ι) (b : G) :
                                                f.update a b = f - single a (f a) + single a b
                                                @[simp]
                                                theorem Finsupp.single_neg {ι : Type u_1} {G : Type u_6} [AddGroup G] (a : ι) (b : G) :
                                                single a (-b) = -single a b
                                                @[simp]
                                                theorem Finsupp.single_sub {ι : Type u_1} {G : Type u_6} [AddGroup G] (a : ι) (b₁ b₂ : G) :
                                                single a (b₁ - b₂) = single a b₁ - single a b₂
                                                @[simp]
                                                theorem Finsupp.erase_neg {ι : Type u_1} {G : Type u_6} [AddGroup G] (a : ι) (f : ι →₀ G) :
                                                erase a (-f) = -erase a f
                                                @[simp]
                                                theorem Finsupp.erase_sub {ι : Type u_1} {G : Type u_6} [AddGroup G] (a : ι) (f₁ f₂ : ι →₀ G) :
                                                erase a (f₁ - f₂) = erase a f₁ - erase a f₂
                                                instance Finsupp.instAddCommGroup {ι : Type u_1} {G : Type u_6} [AddCommGroup G] :
                                                Equations