Documentation

Mathlib.Algebra.Group.Pi.Units

Units in pi types #

def MulEquiv.piUnits {ι : Type u_1} {M : ιType u_2} [(i : ι) → Monoid (M i)] :
((i : ι) → M i)ˣ ≃* ((i : ι) → (M i)ˣ)

The monoid equivalence between units of a product, and the product of the units of each monoid.

Equations
    Instances For
      def AddEquiv.piAddUnits {ι : Type u_1} {M : ιType u_2} [(i : ι) → AddMonoid (M i)] :
      AddUnits ((i : ι) → M i) ≃+ ((i : ι) → AddUnits (M i))

      The additive-monoid equivalence between (additive) units of a product, and the product of the (additive) units of each monoid.

      Equations
        Instances For
          @[simp]
          theorem AddEquiv.val_piAddUnits_symm_apply {ι : Type u_1} {M : ιType u_2} [(i : ι) → AddMonoid (M i)] (f : (i : ι) → AddUnits (M i)) (x✝ : ι) :
          (piAddUnits.symm f) x✝ = (f x✝)
          @[simp]
          theorem AddEquiv.val_piAddUnits_apply {ι : Type u_1} {M : ιType u_2} [(i : ι) → AddMonoid (M i)] (f : AddUnits ((i : ι) → M i)) (i : ι) :
          (piAddUnits f i) = f i
          @[simp]
          theorem MulEquiv.val_piUnits_apply {ι : Type u_1} {M : ιType u_2} [(i : ι) → Monoid (M i)] (f : ((i : ι) → M i)ˣ) (i : ι) :
          (piUnits f i) = f i
          @[simp]
          theorem AddEquiv.val_neg_piAddUnits_symm_apply {ι : Type u_1} {M : ιType u_2} [(i : ι) → AddMonoid (M i)] (f : (i : ι) → AddUnits (M i)) (x✝ : ι) :
          ↑(-piAddUnits.symm f) x✝ = (f x✝).neg
          @[simp]
          theorem MulEquiv.val_piUnits_symm_apply {ι : Type u_1} {M : ιType u_2} [(i : ι) → Monoid (M i)] (f : (i : ι) → (M i)ˣ) (x✝ : ι) :
          (piUnits.symm f) x✝ = (f x✝)
          @[simp]
          theorem AddEquiv.val_neg_piAddUnits_apply {ι : Type u_1} {M : ιType u_2} [(i : ι) → AddMonoid (M i)] (f : AddUnits ((i : ι) → M i)) (i : ι) :
          ↑(-piAddUnits f i) = f.neg i
          @[simp]
          theorem MulEquiv.val_inv_piUnits_symm_apply {ι : Type u_1} {M : ιType u_2} [(i : ι) → Monoid (M i)] (f : (i : ι) → (M i)ˣ) (x✝ : ι) :
          (piUnits.symm f)⁻¹ x✝ = (f x✝).inv
          @[simp]
          theorem MulEquiv.val_inv_piUnits_apply {ι : Type u_1} {M : ιType u_2} [(i : ι) → Monoid (M i)] (f : ((i : ι) → M i)ˣ) (i : ι) :
          (piUnits f i)⁻¹ = f.inv i
          theorem Pi.isUnit_iff {ι : Type u_1} {M : ιType u_2} [(i : ι) → Monoid (M i)] {x : (i : ι) → M i} :
          IsUnit x ∀ (i : ι), IsUnit (x i)
          theorem Pi.isAddUnit_iff {ι : Type u_1} {M : ιType u_2} [(i : ι) → AddMonoid (M i)] {x : (i : ι) → M i} :
          IsAddUnit x ∀ (i : ι), IsAddUnit (x i)
          theorem IsUnit.apply {ι : Type u_1} {M : ιType u_2} [(i : ι) → Monoid (M i)] {x : (i : ι) → M i} :
          IsUnit x∀ (i : ι), IsUnit (x i)

          Alias of the forward direction of Pi.isUnit_iff.

          theorem IsAddUnit.apply {ι : Type u_1} {M : ιType u_2} [(i : ι) → AddMonoid (M i)] {x : (i : ι) → M i} :
          IsAddUnit x∀ (i : ι), IsAddUnit (x i)
          theorem IsUnit.val_inv_apply {ι : Type u_1} {M : ιType u_2} [(i : ι) → Monoid (M i)] {x : (i : ι) → M i} (hx : IsUnit x) (i : ι) :
          hx.unit⁻¹ i = .unit⁻¹
          theorem IsAddUnit.val_neg_apply {ι : Type u_1} {M : ιType u_2} [(i : ι) → AddMonoid (M i)] {x : (i : ι) → M i} (hx : IsAddUnit x) (i : ι) :
          ↑(-hx.addUnit) i = ↑(-.addUnit)