Documentation

Mathlib.Algebra.Homology.HomotopyCategory.Shift

The shift on cochain complexes and on the homotopy category #

In this file, we show that for any preadditive category C, the categories CochainComplex C ℤ and HomotopyCategory C (ComplexShape.up ℤ) are equipped with a shift by .

We also show that if F : C ⥤ D is an additive functor, then the functors F.mapHomologicalComplex (ComplexShape.up ℤ) and F.mapHomotopyCategory (ComplexShape.up ℤ) commute with the shift by .

The shift functor by n : ℤ on CochainComplex C ℤ which sends a cochain complex K to the complex which is K.X (i + n) in degree i, and which multiplies the differentials by (-1)^n.

Equations
    Instances For
      @[simp]
      theorem CochainComplex.shiftFunctor_map_f (C : Type u) [CategoryTheory.Category.{v, u} C] [CategoryTheory.Preadditive C] (n : ) {X✝ Y✝ : CochainComplex C } (φ : X✝ Y✝) (x✝ : ) :
      ((shiftFunctor C n).map φ).f x✝ = φ.f (x✝ + n)
      @[simp]
      theorem CochainComplex.shiftFunctor_obj_d (C : Type u) [CategoryTheory.Category.{v, u} C] [CategoryTheory.Preadditive C] (n : ) (K : CochainComplex C ) (x✝ x✝¹ : ) :
      ((shiftFunctor C n).obj K).d x✝ x✝¹ = n.negOnePow K.d (x✝ + n) (x✝¹ + n)

      The canonical isomorphism ((shiftFunctor C n).obj K).X i ≅ K.X m when m = i + n.

      Equations
        Instances For

          The shift functor by n on CochainComplex C ℤ identifies to the identity functor when n = 0.

          Equations
            Instances For
              def CochainComplex.shiftFunctorAdd' (C : Type u) [CategoryTheory.Category.{v, u} C] [CategoryTheory.Preadditive C] (n₁ n₂ n₁₂ : ) (h : n₁ + n₂ = n₁₂) :
              shiftFunctor C n₁₂ (shiftFunctor C n₁).comp (shiftFunctor C n₂)

              The compatibility of the shift functors on CochainComplex C ℤ with respect to the addition of integers.

              Equations
                Instances For
                  @[simp]
                  theorem CochainComplex.shiftFunctorAdd'_hom_app_f (C : Type u) [CategoryTheory.Category.{v, u} C] [CategoryTheory.Preadditive C] (n₁ n₂ n₁₂ : ) (h : n₁ + n₂ = n₁₂) (X : CochainComplex C ) (i : ) :
                  ((shiftFunctorAdd' C n₁ n₂ n₁₂ h).hom.app X).f i = (HomologicalComplex.XIsoOfEq X ).hom
                  @[simp]
                  theorem CochainComplex.shiftFunctorAdd'_inv_app_f (C : Type u) [CategoryTheory.Category.{v, u} C] [CategoryTheory.Preadditive C] (n₁ n₂ n₁₂ : ) (h : n₁ + n₂ = n₁₂) (X : CochainComplex C ) (i : ) :
                  ((shiftFunctorAdd' C n₁ n₂ n₁₂ h).inv.app X).f i = (HomologicalComplex.XIsoOfEq X ).inv

                  Shifting cochain complexes by n and evaluating in a degree i identifies to the evaluation in degree i' when n + i = i'.

                  Equations
                    Instances For

                      The commutation with the shift isomorphism for the functor on cochain complexes induced by an additive functor between preadditive categories.

                      Equations
                        Instances For

                          If h : Homotopy φ₁ φ₂ and n : ℤ, this is the induced homotopy between φ₁⟦n⟧' and φ₂⟦n⟧'.

                          Equations
                            Instances For