Documentation

Mathlib.Algebra.Lie.Basic

Lie algebras #

This file defines Lie rings and Lie algebras over a commutative ring together with their modules, morphisms and equivalences, as well as various lemmas to make these definitions usable.

Main definitions #

Notation #

Working over a fixed commutative ring R, we introduce the notations:

Implementation notes #

Lie algebras are defined as modules with a compatible Lie ring structure and thus, like modules, are partially unbundled.

References #

Tags #

lie bracket, jacobi identity, lie ring, lie algebra, lie module

class LieRing (L : Type v) extends AddCommGroup L, Bracket L L :

A Lie ring is an additive group with compatible product, known as the bracket, satisfying the Jacobi identity.

Instances
    class LieAlgebra (R : Type u) (L : Type v) [CommRing R] [LieRing L] extends Module R L :
    Type (max u v)

    A Lie algebra is a module with compatible product, known as the bracket, satisfying the Jacobi identity. Forgetting the scalar multiplication, every Lie algebra is a Lie ring.

    Instances
      theorem LieAlgebra.ext_iff {R : Type u} {L : Type v} {inst✝ : CommRing R} {inst✝¹ : LieRing L} {x y : LieAlgebra R L} :
      theorem LieAlgebra.ext {R : Type u} {L : Type v} {inst✝ : CommRing R} {inst✝¹ : LieRing L} {x y : LieAlgebra R L} (smul : SMul.smul = SMul.smul) :
      x = y
      class LieRingModule (L : Type v) (M : Type w) [LieRing L] [AddCommGroup M] extends Bracket L M :
      Type (max v w)

      A Lie ring module is an additive group, together with an additive action of a Lie ring on this group, such that the Lie bracket acts as the commutator of endomorphisms. (For representations of Lie algebras see LieModule.)

      Instances
        class LieModule (R : Type u) (L : Type v) (M : Type w) [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] :

        A Lie module is a module over a commutative ring, together with a linear action of a Lie algebra on this module, such that the Lie bracket acts as the commutator of endomorphisms.

        • smul_lie (t : R) (x : L) (m : M) : t x, m = t x, m

          A Lie module bracket is compatible with scalar multiplication in its first argument.

        • lie_smul (t : R) (x : L) (m : M) : x, t m = t x, m

          A Lie module bracket is compatible with scalar multiplication in its second argument.

        Instances
          class IsLieTower (L₁ : Type u_1) (L₂ : Type u_2) (M : Type u_3) [Bracket L₁ L₂] [Bracket L₁ M] [Bracket L₂ M] [Add M] :

          A tower of Lie bracket actions encapsulates the Leibniz rule for Lie bracket actions.

          More precisely, it does so in a relative setting: Let L₁ and L₂ be two types with Lie bracket actions on a type M endowed with an addition, and additionally assume a Lie bracket action of L₁ on L₂. Then the Leibniz rule asserts for all x : L₁, y : L₂, and m : M that ⁅x, ⁅y, m⁆⁆ = ⁅⁅x, y⁆, m⁆ + ⁅y, ⁅x, m⁆⁆ holds.

          Common examples include the case where L₁ is a Lie subalgebra of L₂ and the case where L₂ is a Lie ideal of L₁.

          Instances
            theorem leibniz_lie {L₁ : Type u_1} {L₂ : Type u_2} {M : Type u_3} [Bracket L₁ L₂] [Bracket L₁ M] [Bracket L₂ M] [Add M] [IsLieTower L₁ L₂ M] (x : L₁) (y : L₂) (m : M) :
            theorem lie_swap_lie {L₁ : Type u_1} {L₂ : Type u_2} {M : Type u_3} [Bracket L₁ L₂] [Bracket L₁ M] [Bracket L₂ M] [Bracket L₂ L₁] [AddCommGroup M] [IsLieTower L₁ L₂ M] [IsLieTower L₂ L₁ M] (x : L₁) (y : L₂) (m : M) :
            @[simp]
            theorem add_lie {L : Type v} {M : Type w} [LieRing L] [AddCommGroup M] [LieRingModule L M] (x y : L) (m : M) :
            x + y, m = x, m + y, m
            @[simp]
            theorem lie_add {L : Type v} {M : Type w} [LieRing L] [AddCommGroup M] [LieRingModule L M] (x : L) (m n : M) :
            x, m + n = x, m + x, n
            @[simp]
            theorem smul_lie {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] (t : R) (x : L) (m : M) :
            t x, m = t x, m
            @[simp]
            theorem lie_smul {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] (t : R) (x : L) (m : M) :
            x, t m = t x, m
            instance instIsLieTower {L : Type v} {M : Type w} [LieRing L] [AddCommGroup M] [LieRingModule L M] :
            @[simp]
            theorem lie_zero {L : Type v} {M : Type w} [LieRing L] [AddCommGroup M] [LieRingModule L M] (x : L) :
            x, 0 = 0
            @[simp]
            theorem zero_lie {L : Type v} {M : Type w} [LieRing L] [AddCommGroup M] [LieRingModule L M] (m : M) :
            0, m = 0
            @[simp]
            theorem lie_self {L : Type v} [LieRing L] (x : L) :
            x, x = 0
            instance lieRingSelfModule {L : Type v} [LieRing L] :
            Equations
              @[simp]
              theorem lie_skew {L : Type v} [LieRing L] (x y : L) :
              instance lieAlgebraSelfModule {R : Type u} {L : Type v} [CommRing R] [LieRing L] [LieAlgebra R L] :
              LieModule R L L

              Every Lie algebra is a module over itself.

              @[simp]
              theorem neg_lie {L : Type v} {M : Type w} [LieRing L] [AddCommGroup M] [LieRingModule L M] (x : L) (m : M) :
              @[simp]
              theorem lie_neg {L : Type v} {M : Type w} [LieRing L] [AddCommGroup M] [LieRingModule L M] (x : L) (m : M) :
              @[simp]
              theorem sub_lie {L : Type v} {M : Type w} [LieRing L] [AddCommGroup M] [LieRingModule L M] (x y : L) (m : M) :
              x - y, m = x, m - y, m
              @[simp]
              theorem lie_sub {L : Type v} {M : Type w} [LieRing L] [AddCommGroup M] [LieRingModule L M] (x : L) (m n : M) :
              x, m - n = x, m - x, n
              @[simp]
              theorem nsmul_lie {L : Type v} {M : Type w} [LieRing L] [AddCommGroup M] [LieRingModule L M] (x : L) (m : M) (n : ) :
              n x, m = n x, m
              @[simp]
              theorem lie_nsmul {L : Type v} {M : Type w} [LieRing L] [AddCommGroup M] [LieRingModule L M] (x : L) (m : M) (n : ) :
              x, n m = n x, m
              theorem zsmul_lie {L : Type v} {M : Type w} [LieRing L] [AddCommGroup M] [LieRingModule L M] (x : L) (m : M) (a : ) :
              a x, m = a x, m
              theorem lie_zsmul {L : Type v} {M : Type w} [LieRing L] [AddCommGroup M] [LieRingModule L M] (x : L) (m : M) (a : ) :
              x, a m = a x, m
              @[simp]
              theorem lie_lie {L : Type v} {M : Type w} [LieRing L] [AddCommGroup M] [LieRingModule L M] (x y : L) (m : M) :
              theorem lie_jacobi {L : Type v} [LieRing L] (x y z : L) :
              def LieRingModule.toEnd (L : Type v) (M : Type w) [LieRing L] [AddCommGroup M] [LieRingModule L M] :
              L →+ M →+ M

              The Lie bracket as a biadditive map.

              Usually one will have coefficients and LieModule.toEnd will be more useful.

              Equations
                Instances For
                  @[simp]
                  theorem LieRingModule.toEnd_apply_apply (L : Type v) (M : Type w) [LieRing L] [AddCommGroup M] [LieRingModule L M] (x : L) (m : M) :
                  ((toEnd L M) x) m = x, m
                  Equations
                    instance instLieModuleInt {L : Type v} {M : Type w} [LieRing L] [AddCommGroup M] [LieRingModule L M] :
                    instance LinearMap.instLieRingModule {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] [AddCommGroup N] [Module R N] [LieRingModule L N] [LieModule R L N] :
                    Equations
                      @[simp]
                      theorem LieHom.lie_apply {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] [AddCommGroup N] [Module R N] [LieRingModule L N] [LieModule R L N] (f : M →ₗ[R] N) (x : L) (m : M) :
                      x, f m = x, f m - f x, m
                      instance LinearMap.instLieModule {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] [AddCommGroup N] [Module R N] [LieRingModule L N] [LieModule R L N] :
                      LieModule R L (M →ₗ[R] N)
                      instance Module.Dual.instLieRingModule {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] :

                      We could avoid defining this by instead defining a LieRingModule L R instance with a zero bracket and relying on LinearMap.instLieRingModule. We do not do this because in the case that L = R we would have a non-defeq diamond via Ring.instBracket.

                      Equations
                        @[simp]
                        theorem Module.Dual.lie_apply {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] (x : L) (m : M) (f : M →ₗ[R] R) :
                        x, f m = -f x, m
                        instance Module.Dual.instLieModule {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [LieAlgebra R L] [AddCommGroup M] [Module R M] [LieRingModule L M] [LieModule R L M] :
                        LieModule R L (M →ₗ[R] R)

                        It is sometimes useful to regard a LieRing as a NonUnitalNonAssocRing.

                        Equations
                          Instances For
                            theorem sum_lie {L : Type v} {M : Type w} [LieRing L] [AddCommGroup M] [LieRingModule L M] {ι : Type u_1} (s : Finset ι) (f : ιL) (m : M) :
                            is, f i, m = is, f i, m
                            theorem lie_sum {L : Type v} {M : Type w} [LieRing L] [AddCommGroup M] [LieRingModule L M] {ι : Type u_1} (s : Finset ι) (f : ιM) (a : L) :
                            a, is, f i = is, a, f i
                            theorem sum_lie_sum {L : Type v} {M : Type w} [LieRing L] [AddCommGroup M] [LieRingModule L M] {ι : Type u_1} {κ : Type u_3} (s : Finset ι) (t : Finset κ) (f : ιL) (g : κM) :
                            is, f i, jt, g j = is, jt, f i, g j
                            structure LieHom (R : Type u_1) (L : Type u_2) (L' : Type u_3) [CommRing R] [LieRing L] [LieAlgebra R L] [LieRing L'] [LieAlgebra R L'] extends L →ₗ[R] L' :
                            Type (max u_2 u_3)

                            A morphism of Lie algebras (denoted as L₁ →ₗ⁅R⁆ L₂) is a linear map respecting the bracket operations.

                            Instances For

                              A morphism of Lie algebras (denoted as L₁ →ₗ⁅R⁆ L₂) is a linear map respecting the bracket operations.

                              Equations
                                Instances For
                                  instance LieHom.instCoeLinearMapId {R : Type u} {L₁ : Type v} {L₂ : Type w} [CommRing R] [LieRing L₁] [LieAlgebra R L₁] [LieRing L₂] [LieAlgebra R L₂] :
                                  Coe (L₁ →ₗ⁅R L₂) (L₁ →ₗ[R] L₂)
                                  Equations
                                    instance LieHom.instFunLike {R : Type u} {L₁ : Type v} {L₂ : Type w} [CommRing R] [LieRing L₁] [LieAlgebra R L₁] [LieRing L₂] [LieAlgebra R L₂] :
                                    FunLike (L₁ →ₗ⁅R L₂) L₁ L₂
                                    Equations
                                      @[simp]
                                      theorem LieHom.coe_toLinearMap {R : Type u} {L₁ : Type v} {L₂ : Type w} [CommRing R] [LieRing L₁] [LieAlgebra R L₁] [LieRing L₂] [LieAlgebra R L₂] (f : L₁ →ₗ⁅R L₂) :
                                      f = f
                                      @[simp]
                                      theorem LieHom.toFun_eq_coe {R : Type u} {L₁ : Type v} {L₂ : Type w} [CommRing R] [LieRing L₁] [LieAlgebra R L₁] [LieRing L₂] [LieAlgebra R L₂] (f : L₁ →ₗ⁅R L₂) :
                                      (↑f).toFun = f
                                      @[simp]
                                      theorem LieHom.map_smul {R : Type u} {L₁ : Type v} {L₂ : Type w} [CommRing R] [LieRing L₁] [LieAlgebra R L₁] [LieRing L₂] [LieAlgebra R L₂] (f : L₁ →ₗ⁅R L₂) (c : R) (x : L₁) :
                                      f (c x) = c f x
                                      @[simp]
                                      theorem LieHom.map_add {R : Type u} {L₁ : Type v} {L₂ : Type w} [CommRing R] [LieRing L₁] [LieAlgebra R L₁] [LieRing L₂] [LieAlgebra R L₂] (f : L₁ →ₗ⁅R L₂) (x y : L₁) :
                                      f (x + y) = f x + f y
                                      @[simp]
                                      theorem LieHom.map_sub {R : Type u} {L₁ : Type v} {L₂ : Type w} [CommRing R] [LieRing L₁] [LieAlgebra R L₁] [LieRing L₂] [LieAlgebra R L₂] (f : L₁ →ₗ⁅R L₂) (x y : L₁) :
                                      f (x - y) = f x - f y
                                      @[simp]
                                      theorem LieHom.map_neg {R : Type u} {L₁ : Type v} {L₂ : Type w} [CommRing R] [LieRing L₁] [LieAlgebra R L₁] [LieRing L₂] [LieAlgebra R L₂] (f : L₁ →ₗ⁅R L₂) (x : L₁) :
                                      f (-x) = -f x
                                      @[simp]
                                      theorem LieHom.map_lie {R : Type u} {L₁ : Type v} {L₂ : Type w} [CommRing R] [LieRing L₁] [LieAlgebra R L₁] [LieRing L₂] [LieAlgebra R L₂] (f : L₁ →ₗ⁅R L₂) (x y : L₁) :
                                      f x, y = f x, f y
                                      @[simp]
                                      theorem LieHom.map_zero {R : Type u} {L₁ : Type v} {L₂ : Type w} [CommRing R] [LieRing L₁] [LieAlgebra R L₁] [LieRing L₂] [LieAlgebra R L₂] (f : L₁ →ₗ⁅R L₂) :
                                      f 0 = 0
                                      def LieHom.id {R : Type u} {L₁ : Type v} [CommRing R] [LieRing L₁] [LieAlgebra R L₁] :
                                      L₁ →ₗ⁅R L₁

                                      The identity map is a morphism of Lie algebras.

                                      Equations
                                        Instances For
                                          @[simp]
                                          theorem LieHom.coe_id {R : Type u} {L₁ : Type v} [CommRing R] [LieRing L₁] [LieAlgebra R L₁] :
                                          theorem LieHom.id_apply {R : Type u} {L₁ : Type v} [CommRing R] [LieRing L₁] [LieAlgebra R L₁] (x : L₁) :
                                          id x = x
                                          instance LieHom.instZero {R : Type u} {L₁ : Type v} {L₂ : Type w} [CommRing R] [LieRing L₁] [LieAlgebra R L₁] [LieRing L₂] [LieAlgebra R L₂] :
                                          Zero (L₁ →ₗ⁅R L₂)

                                          The constant 0 map is a Lie algebra morphism.

                                          Equations
                                            @[simp]
                                            theorem LieHom.coe_zero {R : Type u} {L₁ : Type v} {L₂ : Type w} [CommRing R] [LieRing L₁] [LieAlgebra R L₁] [LieRing L₂] [LieAlgebra R L₂] :
                                            0 = 0
                                            theorem LieHom.zero_apply {R : Type u} {L₁ : Type v} {L₂ : Type w} [CommRing R] [LieRing L₁] [LieAlgebra R L₁] [LieRing L₂] [LieAlgebra R L₂] (x : L₁) :
                                            0 x = 0
                                            instance LieHom.instOne {R : Type u} {L₁ : Type v} [CommRing R] [LieRing L₁] [LieAlgebra R L₁] :
                                            One (L₁ →ₗ⁅R L₁)

                                            The identity map is a Lie algebra morphism.

                                            Equations
                                              @[simp]
                                              theorem LieHom.coe_one {R : Type u} {L₁ : Type v} [CommRing R] [LieRing L₁] [LieAlgebra R L₁] :
                                              theorem LieHom.one_apply {R : Type u} {L₁ : Type v} [CommRing R] [LieRing L₁] [LieAlgebra R L₁] (x : L₁) :
                                              1 x = x
                                              instance LieHom.instInhabited {R : Type u} {L₁ : Type v} {L₂ : Type w} [CommRing R] [LieRing L₁] [LieAlgebra R L₁] [LieRing L₂] [LieAlgebra R L₂] :
                                              Inhabited (L₁ →ₗ⁅R L₂)
                                              Equations
                                                theorem LieHom.coe_injective {R : Type u} {L₁ : Type v} {L₂ : Type w} [CommRing R] [LieRing L₁] [LieAlgebra R L₁] [LieRing L₂] [LieAlgebra R L₂] :
                                                theorem LieHom.ext {R : Type u} {L₁ : Type v} {L₂ : Type w} [CommRing R] [LieRing L₁] [LieAlgebra R L₁] [LieRing L₂] [LieAlgebra R L₂] {f g : L₁ →ₗ⁅R L₂} (h : ∀ (x : L₁), f x = g x) :
                                                f = g
                                                theorem LieHom.ext_iff {R : Type u} {L₁ : Type v} {L₂ : Type w} [CommRing R] [LieRing L₁] [LieAlgebra R L₁] [LieRing L₂] [LieAlgebra R L₂] {f g : L₁ →ₗ⁅R L₂} :
                                                f = g ∀ (x : L₁), f x = g x
                                                theorem LieHom.congr_fun {R : Type u} {L₁ : Type v} {L₂ : Type w} [CommRing R] [LieRing L₁] [LieAlgebra R L₁] [LieRing L₂] [LieAlgebra R L₂] {f g : L₁ →ₗ⁅R L₂} (h : f = g) (x : L₁) :
                                                f x = g x
                                                @[simp]
                                                theorem LieHom.mk_coe {R : Type u} {L₁ : Type v} {L₂ : Type w} [CommRing R] [LieRing L₁] [LieAlgebra R L₁] [LieRing L₂] [LieAlgebra R L₂] (f : L₁ →ₗ⁅R L₂) (h₁ : ∀ (x y : L₁), f (x + y) = f x + f y) (h₂ : ∀ (m : R) (x : L₁), { toFun := f, map_add' := h₁ }.toFun (m x) = (RingHom.id R) m { toFun := f, map_add' := h₁ }.toFun x) (h₃ : ∀ {x y : L₁}, { toFun := f, map_add' := h₁, map_smul' := h₂ }.toFun x, y = { toFun := f, map_add' := h₁, map_smul' := h₂ }.toFun x, { toFun := f, map_add' := h₁, map_smul' := h₂ }.toFun y) :
                                                { toFun := f, map_add' := h₁, map_smul' := h₂, map_lie' := h₃ } = f
                                                @[simp]
                                                theorem LieHom.coe_mk {R : Type u} {L₁ : Type v} {L₂ : Type w} [CommRing R] [LieRing L₁] [LieAlgebra R L₁] [LieRing L₂] [LieAlgebra R L₂] (f : L₁L₂) (h₁ : ∀ (x y : L₁), f (x + y) = f x + f y) (h₂ : ∀ (m : R) (x : L₁), { toFun := f, map_add' := h₁ }.toFun (m x) = (RingHom.id R) m { toFun := f, map_add' := h₁ }.toFun x) (h₃ : ∀ {x y : L₁}, { toFun := f, map_add' := h₁, map_smul' := h₂ }.toFun x, y = { toFun := f, map_add' := h₁, map_smul' := h₂ }.toFun x, { toFun := f, map_add' := h₁, map_smul' := h₂ }.toFun y) :
                                                { toFun := f, map_add' := h₁, map_smul' := h₂, map_lie' := h₃ } = f
                                                def LieHom.comp {R : Type u} {L₁ : Type v} {L₂ : Type w} {L₃ : Type w₁} [CommRing R] [LieRing L₁] [LieAlgebra R L₁] [LieRing L₂] [LieAlgebra R L₂] [LieRing L₃] [LieAlgebra R L₃] (f : L₂ →ₗ⁅R L₃) (g : L₁ →ₗ⁅R L₂) :
                                                L₁ →ₗ⁅R L₃

                                                The composition of morphisms is a morphism.

                                                Equations
                                                  Instances For
                                                    theorem LieHom.comp_apply {R : Type u} {L₁ : Type v} {L₂ : Type w} {L₃ : Type w₁} [CommRing R] [LieRing L₁] [LieAlgebra R L₁] [LieRing L₂] [LieAlgebra R L₂] [LieRing L₃] [LieAlgebra R L₃] (f : L₂ →ₗ⁅R L₃) (g : L₁ →ₗ⁅R L₂) (x : L₁) :
                                                    (f.comp g) x = f (g x)
                                                    @[simp]
                                                    theorem LieHom.coe_comp {R : Type u} {L₁ : Type v} {L₂ : Type w} {L₃ : Type w₁} [CommRing R] [LieRing L₁] [LieAlgebra R L₁] [LieRing L₂] [LieAlgebra R L₂] [LieRing L₃] [LieAlgebra R L₃] (f : L₂ →ₗ⁅R L₃) (g : L₁ →ₗ⁅R L₂) :
                                                    (f.comp g) = f g
                                                    @[simp]
                                                    theorem LieHom.toLinearMap_comp {R : Type u} {L₁ : Type v} {L₂ : Type w} {L₃ : Type w₁} [CommRing R] [LieRing L₁] [LieAlgebra R L₁] [LieRing L₂] [LieAlgebra R L₂] [LieRing L₃] [LieAlgebra R L₃] (f : L₂ →ₗ⁅R L₃) (g : L₁ →ₗ⁅R L₂) :
                                                    (f.comp g) = f ∘ₗ g
                                                    @[simp]
                                                    theorem LieHom.comp_id {R : Type u} {L₁ : Type v} {L₂ : Type w} [CommRing R] [LieRing L₁] [LieAlgebra R L₁] [LieRing L₂] [LieAlgebra R L₂] (f : L₁ →ₗ⁅R L₂) :
                                                    f.comp id = f
                                                    @[simp]
                                                    theorem LieHom.id_comp {R : Type u} {L₁ : Type v} {L₂ : Type w} [CommRing R] [LieRing L₁] [LieAlgebra R L₁] [LieRing L₂] [LieAlgebra R L₂] (f : L₁ →ₗ⁅R L₂) :
                                                    id.comp f = f
                                                    def LieHom.inverse {R : Type u} {L₁ : Type v} {L₂ : Type w} [CommRing R] [LieRing L₁] [LieAlgebra R L₁] [LieRing L₂] [LieAlgebra R L₂] (f : L₁ →ₗ⁅R L₂) (g : L₂L₁) (h₁ : Function.LeftInverse g f) (h₂ : Function.RightInverse g f) :
                                                    L₂ →ₗ⁅R L₁

                                                    The inverse of a bijective morphism is a morphism.

                                                    Equations
                                                      Instances For
                                                        def LieRingModule.compLieHom {R : Type u} {L₁ : Type v} {L₂ : Type w} (M : Type w₁) [CommRing R] [LieRing L₁] [LieAlgebra R L₁] [LieRing L₂] [LieAlgebra R L₂] [AddCommGroup M] [LieRingModule L₂ M] (f : L₁ →ₗ⁅R L₂) :

                                                        A Lie ring module may be pulled back along a morphism of Lie algebras.

                                                        See note [reducible non-instances].

                                                        Equations
                                                          Instances For
                                                            theorem LieRingModule.compLieHom_apply {R : Type u} {L₁ : Type v} {L₂ : Type w} (M : Type w₁) [CommRing R] [LieRing L₁] [LieAlgebra R L₁] [LieRing L₂] [LieAlgebra R L₂] [AddCommGroup M] [LieRingModule L₂ M] (f : L₁ →ₗ⁅R L₂) (x : L₁) (m : M) :
                                                            x, m = f x, m
                                                            theorem LieModule.compLieHom {R : Type u} {L₁ : Type v} {L₂ : Type w} (M : Type w₁) [CommRing R] [LieRing L₁] [LieAlgebra R L₁] [LieRing L₂] [LieAlgebra R L₂] [AddCommGroup M] [LieRingModule L₂ M] (f : L₁ →ₗ⁅R L₂) [Module R M] [LieModule R L₂ M] :
                                                            LieModule R L₁ M

                                                            A Lie module may be pulled back along a morphism of Lie algebras.

                                                            structure LieEquiv (R : Type u) (L : Type v) (L' : Type w) [CommRing R] [LieRing L] [LieAlgebra R L] [LieRing L'] [LieAlgebra R L'] extends L →ₗ⁅R L' :
                                                            Type (max v w)

                                                            An equivalence of Lie algebras (denoted as L₁ ≃ₗ⁅R⁆ L₂) is a morphism which is also a linear equivalence. We could instead define an equivalence to be a morphism which is also a (plain) equivalence. However, it is more convenient to define via linear equivalence to get .toLinearEquiv for free.

                                                            Instances For

                                                              An equivalence of Lie algebras (denoted as L₁ ≃ₗ⁅R⁆ L₂) is a morphism which is also a linear equivalence. We could instead define an equivalence to be a morphism which is also a (plain) equivalence. However, it is more convenient to define via linear equivalence to get .toLinearEquiv for free.

                                                              Equations
                                                                Instances For
                                                                  def LieEquiv.toLinearEquiv {R : Type u} {L₁ : Type v} {L₂ : Type w} [CommRing R] [LieRing L₁] [LieRing L₂] [LieAlgebra R L₁] [LieAlgebra R L₂] (f : L₁ ≃ₗ⁅R L₂) :
                                                                  L₁ ≃ₗ[R] L₂

                                                                  Consider an equivalence of Lie algebras as a linear equivalence.

                                                                  Equations
                                                                    Instances For
                                                                      instance LieEquiv.hasCoeToLieHom {R : Type u} {L₁ : Type v} {L₂ : Type w} [CommRing R] [LieRing L₁] [LieRing L₂] [LieAlgebra R L₁] [LieAlgebra R L₂] :
                                                                      Coe (L₁ ≃ₗ⁅R L₂) (L₁ →ₗ⁅R L₂)
                                                                      Equations
                                                                        instance LieEquiv.hasCoeToLinearEquiv {R : Type u} {L₁ : Type v} {L₂ : Type w} [CommRing R] [LieRing L₁] [LieRing L₂] [LieAlgebra R L₁] [LieAlgebra R L₂] :
                                                                        Coe (L₁ ≃ₗ⁅R L₂) (L₁ ≃ₗ[R] L₂)
                                                                        Equations
                                                                          instance LieEquiv.instEquivLike {R : Type u} {L₁ : Type v} {L₂ : Type w} [CommRing R] [LieRing L₁] [LieRing L₂] [LieAlgebra R L₁] [LieAlgebra R L₂] :
                                                                          EquivLike (L₁ ≃ₗ⁅R L₂) L₁ L₂
                                                                          Equations
                                                                            theorem LieEquiv.coe_toLieHom {R : Type u} {L₁ : Type v} {L₂ : Type w} [CommRing R] [LieRing L₁] [LieRing L₂] [LieAlgebra R L₁] [LieAlgebra R L₂] (e : L₁ ≃ₗ⁅R L₂) :
                                                                            e.toLieHom = e
                                                                            @[simp]
                                                                            theorem LieEquiv.coe_toLinearEquiv {R : Type u} {L₁ : Type v} {L₂ : Type w} [CommRing R] [LieRing L₁] [LieRing L₂] [LieAlgebra R L₁] [LieAlgebra R L₂] (e : L₁ ≃ₗ⁅R L₂) :
                                                                            e.toLinearEquiv = e
                                                                            @[simp]
                                                                            theorem LieEquiv.coe_coe {R : Type u} {L₁ : Type v} {L₂ : Type w} [CommRing R] [LieRing L₁] [LieRing L₂] [LieAlgebra R L₁] [LieAlgebra R L₂] (e : L₁ ≃ₗ⁅R L₂) :
                                                                            e.toLieHom = e
                                                                            @[simp]
                                                                            theorem LieEquiv.toLinearEquiv_mk {R : Type u} {L₁ : Type v} {L₂ : Type w} [CommRing R] [LieRing L₁] [LieRing L₂] [LieAlgebra R L₁] [LieAlgebra R L₂] (f : L₁ →ₗ⁅R L₂) (g : L₂L₁) (h₁ : Function.LeftInverse g (↑f).toFun) (h₂ : Function.RightInverse g (↑f).toFun) :
                                                                            { toLieHom := f, invFun := g, left_inv := h₁, right_inv := h₂ }.toLinearEquiv = { toLinearMap := f, invFun := g, left_inv := h₁, right_inv := h₂ }
                                                                            theorem LieEquiv.toLinearEquiv_injective {R : Type u} {L₁ : Type v} {L₂ : Type w} [CommRing R] [LieRing L₁] [LieRing L₂] [LieAlgebra R L₁] [LieAlgebra R L₂] :
                                                                            theorem LieEquiv.coe_injective {R : Type u} {L₁ : Type v} {L₂ : Type w} [CommRing R] [LieRing L₁] [LieRing L₂] [LieAlgebra R L₁] [LieAlgebra R L₂] :
                                                                            theorem LieEquiv.ext {R : Type u} {L₁ : Type v} {L₂ : Type w} [CommRing R] [LieRing L₁] [LieRing L₂] [LieAlgebra R L₁] [LieAlgebra R L₂] {f g : L₁ ≃ₗ⁅R L₂} (h : ∀ (x : L₁), f x = g x) :
                                                                            f = g
                                                                            theorem LieEquiv.ext_iff {R : Type u} {L₁ : Type v} {L₂ : Type w} [CommRing R] [LieRing L₁] [LieRing L₂] [LieAlgebra R L₁] [LieAlgebra R L₂] {f g : L₁ ≃ₗ⁅R L₂} :
                                                                            f = g ∀ (x : L₁), f x = g x
                                                                            instance LieEquiv.instOne {R : Type u} {L₁ : Type v} [CommRing R] [LieRing L₁] [LieAlgebra R L₁] :
                                                                            One (L₁ ≃ₗ⁅R L₁)
                                                                            Equations
                                                                              @[simp]
                                                                              theorem LieEquiv.one_apply {R : Type u} {L₁ : Type v} [CommRing R] [LieRing L₁] [LieAlgebra R L₁] (x : L₁) :
                                                                              1 x = x
                                                                              instance LieEquiv.instInhabited {R : Type u} {L₁ : Type v} [CommRing R] [LieRing L₁] [LieAlgebra R L₁] :
                                                                              Inhabited (L₁ ≃ₗ⁅R L₁)
                                                                              Equations
                                                                                theorem LieEquiv.map_lie {R : Type u} {L₁ : Type v} {L₂ : Type w} [CommRing R] [LieRing L₁] [LieRing L₂] [LieAlgebra R L₁] [LieAlgebra R L₂] (e : L₁ ≃ₗ⁅R L₂) (x y : L₁) :
                                                                                e x, y = e x, e y
                                                                                def LieEquiv.refl {R : Type u} {L₁ : Type v} [CommRing R] [LieRing L₁] [LieAlgebra R L₁] :
                                                                                L₁ ≃ₗ⁅R L₁

                                                                                Lie algebra equivalences are reflexive.

                                                                                Equations
                                                                                  Instances For
                                                                                    @[simp]
                                                                                    theorem LieEquiv.refl_apply {R : Type u} {L₁ : Type v} [CommRing R] [LieRing L₁] [LieAlgebra R L₁] (x : L₁) :
                                                                                    refl x = x
                                                                                    def LieEquiv.symm {R : Type u} {L₁ : Type v} {L₂ : Type w} [CommRing R] [LieRing L₁] [LieRing L₂] [LieAlgebra R L₁] [LieAlgebra R L₂] (e : L₁ ≃ₗ⁅R L₂) :
                                                                                    L₂ ≃ₗ⁅R L₁

                                                                                    Lie algebra equivalences are symmetric.

                                                                                    Equations
                                                                                      Instances For
                                                                                        @[simp]
                                                                                        theorem LieEquiv.symm_symm {R : Type u} {L₁ : Type v} {L₂ : Type w} [CommRing R] [LieRing L₁] [LieRing L₂] [LieAlgebra R L₁] [LieAlgebra R L₂] (e : L₁ ≃ₗ⁅R L₂) :
                                                                                        e.symm.symm = e
                                                                                        theorem LieEquiv.symm_bijective {R : Type u} {L₁ : Type v} {L₂ : Type w} [CommRing R] [LieRing L₁] [LieRing L₂] [LieAlgebra R L₁] [LieAlgebra R L₂] :
                                                                                        @[simp]
                                                                                        theorem LieEquiv.apply_symm_apply {R : Type u} {L₁ : Type v} {L₂ : Type w} [CommRing R] [LieRing L₁] [LieRing L₂] [LieAlgebra R L₁] [LieAlgebra R L₂] (e : L₁ ≃ₗ⁅R L₂) (x : L₂) :
                                                                                        e (e.symm x) = x
                                                                                        @[simp]
                                                                                        theorem LieEquiv.symm_apply_apply {R : Type u} {L₁ : Type v} {L₂ : Type w} [CommRing R] [LieRing L₁] [LieRing L₂] [LieAlgebra R L₁] [LieAlgebra R L₂] (e : L₁ ≃ₗ⁅R L₂) (x : L₁) :
                                                                                        e.symm (e x) = x
                                                                                        @[simp]
                                                                                        theorem LieEquiv.refl_symm {R : Type u} {L₁ : Type v} [CommRing R] [LieRing L₁] [LieAlgebra R L₁] :
                                                                                        def LieEquiv.trans {R : Type u} {L₁ : Type v} {L₂ : Type w} {L₃ : Type w₁} [CommRing R] [LieRing L₁] [LieRing L₂] [LieRing L₃] [LieAlgebra R L₁] [LieAlgebra R L₂] [LieAlgebra R L₃] (e₁ : L₁ ≃ₗ⁅R L₂) (e₂ : L₂ ≃ₗ⁅R L₃) :
                                                                                        L₁ ≃ₗ⁅R L₃

                                                                                        Lie algebra equivalences are transitive.

                                                                                        Equations
                                                                                          Instances For
                                                                                            @[simp]
                                                                                            theorem LieEquiv.self_trans_symm {R : Type u} {L₁ : Type v} {L₂ : Type w} [CommRing R] [LieRing L₁] [LieRing L₂] [LieAlgebra R L₁] [LieAlgebra R L₂] (e : L₁ ≃ₗ⁅R L₂) :
                                                                                            @[simp]
                                                                                            theorem LieEquiv.symm_trans_self {R : Type u} {L₁ : Type v} {L₂ : Type w} [CommRing R] [LieRing L₁] [LieRing L₂] [LieAlgebra R L₁] [LieAlgebra R L₂] (e : L₁ ≃ₗ⁅R L₂) :
                                                                                            @[simp]
                                                                                            theorem LieEquiv.trans_apply {R : Type u} {L₁ : Type v} {L₂ : Type w} {L₃ : Type w₁} [CommRing R] [LieRing L₁] [LieRing L₂] [LieRing L₃] [LieAlgebra R L₁] [LieAlgebra R L₂] [LieAlgebra R L₃] (e₁ : L₁ ≃ₗ⁅R L₂) (e₂ : L₂ ≃ₗ⁅R L₃) (x : L₁) :
                                                                                            (e₁.trans e₂) x = e₂ (e₁ x)
                                                                                            @[simp]
                                                                                            theorem LieEquiv.symm_trans {R : Type u} {L₁ : Type v} {L₂ : Type w} {L₃ : Type w₁} [CommRing R] [LieRing L₁] [LieRing L₂] [LieRing L₃] [LieAlgebra R L₁] [LieAlgebra R L₂] [LieAlgebra R L₃] (e₁ : L₁ ≃ₗ⁅R L₂) (e₂ : L₂ ≃ₗ⁅R L₃) :
                                                                                            (e₁.trans e₂).symm = e₂.symm.trans e₁.symm
                                                                                            theorem LieEquiv.bijective {R : Type u} {L₁ : Type v} {L₂ : Type w} [CommRing R] [LieRing L₁] [LieRing L₂] [LieAlgebra R L₁] [LieAlgebra R L₂] (e : L₁ ≃ₗ⁅R L₂) :
                                                                                            theorem LieEquiv.injective {R : Type u} {L₁ : Type v} {L₂ : Type w} [CommRing R] [LieRing L₁] [LieRing L₂] [LieAlgebra R L₁] [LieAlgebra R L₂] (e : L₁ ≃ₗ⁅R L₂) :
                                                                                            theorem LieEquiv.surjective {R : Type u} {L₁ : Type v} {L₂ : Type w} [CommRing R] [LieRing L₁] [LieRing L₂] [LieAlgebra R L₁] [LieAlgebra R L₂] (e : L₁ ≃ₗ⁅R L₂) :
                                                                                            noncomputable def LieEquiv.ofBijective {R : Type u} {L₁ : Type v} {L₂ : Type w} [CommRing R] [LieRing L₁] [LieRing L₂] [LieAlgebra R L₁] [LieAlgebra R L₂] (f : L₁ →ₗ⁅R L₂) (h : Function.Bijective f) :
                                                                                            L₁ ≃ₗ⁅R L₂

                                                                                            A bijective morphism of Lie algebras yields an equivalence of Lie algebras.

                                                                                            Equations
                                                                                              Instances For
                                                                                                @[simp]
                                                                                                theorem LieEquiv.ofBijective_invFun {R : Type u} {L₁ : Type v} {L₂ : Type w} [CommRing R] [LieRing L₁] [LieRing L₂] [LieAlgebra R L₁] [LieAlgebra R L₂] (f : L₁ →ₗ⁅R L₂) (h : Function.Bijective f) (a✝ : L₂) :
                                                                                                (ofBijective f h).invFun a✝ = (LinearEquiv.ofBijective (↑f) h).symm a✝
                                                                                                @[simp]
                                                                                                theorem LieEquiv.ofBijective_toFun {R : Type u} {L₁ : Type v} {L₂ : Type w} [CommRing R] [LieRing L₁] [LieRing L₂] [LieAlgebra R L₁] [LieAlgebra R L₂] (f : L₁ →ₗ⁅R L₂) (h : Function.Bijective f) (a : L₁) :
                                                                                                (ofBijective f h) a = f a
                                                                                                structure LieModuleHom (R : Type u) (L : Type v) (M : Type w) (N : Type w₁) [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] extends M →ₗ[R] N :
                                                                                                Type (max w w₁)

                                                                                                A morphism of Lie algebra modules (denoted as M →ₗ⁅R,L⁆ N) is a linear map which commutes with the action of the Lie algebra.

                                                                                                Instances For

                                                                                                  A morphism of Lie algebra modules (denoted as M →ₗ⁅R,L⁆ N) is a linear map which commutes with the action of the Lie algebra.

                                                                                                  Equations
                                                                                                    Instances For
                                                                                                      instance LieModuleHom.instCoeOutLinearMapId {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] :
                                                                                                      Equations
                                                                                                        instance LieModuleHom.instFunLike {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] :
                                                                                                        Equations
                                                                                                          @[simp]
                                                                                                          theorem LieModuleHom.coe_toLinearMap {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] (f : M →ₗ⁅R,L N) :
                                                                                                          f = f
                                                                                                          @[simp]
                                                                                                          theorem LieModuleHom.map_smul {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] (f : M →ₗ⁅R,L N) (c : R) (x : M) :
                                                                                                          f (c x) = c f x
                                                                                                          @[simp]
                                                                                                          theorem LieModuleHom.map_add {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] (f : M →ₗ⁅R,L N) (x y : M) :
                                                                                                          f (x + y) = f x + f y
                                                                                                          @[simp]
                                                                                                          theorem LieModuleHom.map_sub {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] (f : M →ₗ⁅R,L N) (x y : M) :
                                                                                                          f (x - y) = f x - f y
                                                                                                          @[simp]
                                                                                                          theorem LieModuleHom.map_neg {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] (f : M →ₗ⁅R,L N) (x : M) :
                                                                                                          f (-x) = -f x
                                                                                                          @[simp]
                                                                                                          theorem LieModuleHom.map_lie {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] (f : M →ₗ⁅R,L N) (x : L) (m : M) :
                                                                                                          f x, m = x, f m
                                                                                                          theorem LieModuleHom.map_lie₂ {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} {P : Type w₂} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [AddCommGroup P] [Module R M] [Module R N] [Module R P] [LieRingModule L M] [LieRingModule L N] [LieRingModule L P] [LieAlgebra R L] [LieModule R L N] [LieModule R L P] (f : M →ₗ⁅R,L N →ₗ[R] P) (x : L) (m : M) (n : N) :
                                                                                                          x, (f m) n = (f x, m) n + (f m) x, n
                                                                                                          @[simp]
                                                                                                          theorem LieModuleHom.map_zero {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] (f : M →ₗ⁅R,L N) :
                                                                                                          f 0 = 0
                                                                                                          def LieModuleHom.id {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [AddCommGroup M] [Module R M] [LieRingModule L M] :

                                                                                                          The identity map is a morphism of Lie modules.

                                                                                                          Equations
                                                                                                            Instances For
                                                                                                              @[simp]
                                                                                                              theorem LieModuleHom.coe_id {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [AddCommGroup M] [Module R M] [LieRingModule L M] :
                                                                                                              theorem LieModuleHom.id_apply {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [AddCommGroup M] [Module R M] [LieRingModule L M] (x : M) :
                                                                                                              id x = x
                                                                                                              instance LieModuleHom.instZero {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] :

                                                                                                              The constant 0 map is a Lie module morphism.

                                                                                                              Equations
                                                                                                                @[simp]
                                                                                                                theorem LieModuleHom.coe_zero {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] :
                                                                                                                0 = 0
                                                                                                                theorem LieModuleHom.zero_apply {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] (m : M) :
                                                                                                                0 m = 0
                                                                                                                instance LieModuleHom.instOne {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [AddCommGroup M] [Module R M] [LieRingModule L M] :

                                                                                                                The identity map is a Lie module morphism.

                                                                                                                Equations
                                                                                                                  instance LieModuleHom.instInhabited {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] :
                                                                                                                  Equations
                                                                                                                    theorem LieModuleHom.ext {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] {f g : M →ₗ⁅R,L N} (h : ∀ (m : M), f m = g m) :
                                                                                                                    f = g
                                                                                                                    theorem LieModuleHom.ext_iff {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] {f g : M →ₗ⁅R,L N} :
                                                                                                                    f = g ∀ (m : M), f m = g m
                                                                                                                    theorem LieModuleHom.congr_fun {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] {f g : M →ₗ⁅R,L N} (h : f = g) (x : M) :
                                                                                                                    f x = g x
                                                                                                                    @[simp]
                                                                                                                    theorem LieModuleHom.mk_coe {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] (f : M →ₗ⁅R,L N) (h : ∀ {x : L} {m : M}, (↑f).toFun x, m = x, (↑f).toFun m) :
                                                                                                                    { toLinearMap := f, map_lie' := h } = f
                                                                                                                    @[simp]
                                                                                                                    theorem LieModuleHom.coe_mk {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] (f : M →ₗ[R] N) (h : ∀ {x : L} {m : M}, f.toFun x, m = x, f.toFun m) :
                                                                                                                    { toLinearMap := f, map_lie' := h } = f
                                                                                                                    theorem LieModuleHom.coe_linear_mk {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] (f : M →ₗ[R] N) (h : ∀ {x : L} {m : M}, f.toFun x, m = x, f.toFun m) :
                                                                                                                    { toLinearMap := f, map_lie' := h } = f
                                                                                                                    def LieModuleHom.comp {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} {P : Type w₂} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [AddCommGroup P] [Module R M] [Module R N] [Module R P] [LieRingModule L M] [LieRingModule L N] [LieRingModule L P] (f : N →ₗ⁅R,L P) (g : M →ₗ⁅R,L N) :

                                                                                                                    The composition of Lie module morphisms is a morphism.

                                                                                                                    Equations
                                                                                                                      Instances For
                                                                                                                        theorem LieModuleHom.comp_apply {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} {P : Type w₂} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [AddCommGroup P] [Module R M] [Module R N] [Module R P] [LieRingModule L M] [LieRingModule L N] [LieRingModule L P] (f : N →ₗ⁅R,L P) (g : M →ₗ⁅R,L N) (m : M) :
                                                                                                                        (f.comp g) m = f (g m)
                                                                                                                        @[simp]
                                                                                                                        theorem LieModuleHom.coe_comp {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} {P : Type w₂} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [AddCommGroup P] [Module R M] [Module R N] [Module R P] [LieRingModule L M] [LieRingModule L N] [LieRingModule L P] (f : N →ₗ⁅R,L P) (g : M →ₗ⁅R,L N) :
                                                                                                                        (f.comp g) = f g
                                                                                                                        @[simp]
                                                                                                                        theorem LieModuleHom.toLinearMap_comp {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} {P : Type w₂} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [AddCommGroup P] [Module R M] [Module R N] [Module R P] [LieRingModule L M] [LieRingModule L N] [LieRingModule L P] (f : N →ₗ⁅R,L P) (g : M →ₗ⁅R,L N) :
                                                                                                                        (f.comp g) = f ∘ₗ g
                                                                                                                        def LieModuleHom.inverse {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] (f : M →ₗ⁅R,L N) (g : NM) (h₁ : Function.LeftInverse g f) (h₂ : Function.RightInverse g f) :

                                                                                                                        The inverse of a bijective morphism of Lie modules is a morphism of Lie modules.

                                                                                                                        Equations
                                                                                                                          Instances For
                                                                                                                            instance LieModuleHom.instAdd {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] :
                                                                                                                            Equations
                                                                                                                              instance LieModuleHom.instSub {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] :
                                                                                                                              Equations
                                                                                                                                instance LieModuleHom.instNeg {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] :
                                                                                                                                Equations
                                                                                                                                  @[simp]
                                                                                                                                  theorem LieModuleHom.coe_add {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] (f g : M →ₗ⁅R,L N) :
                                                                                                                                  ⇑(f + g) = f + g
                                                                                                                                  theorem LieModuleHom.add_apply {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] (f g : M →ₗ⁅R,L N) (m : M) :
                                                                                                                                  (f + g) m = f m + g m
                                                                                                                                  @[simp]
                                                                                                                                  theorem LieModuleHom.coe_sub {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] (f g : M →ₗ⁅R,L N) :
                                                                                                                                  ⇑(f - g) = f - g
                                                                                                                                  theorem LieModuleHom.sub_apply {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] (f g : M →ₗ⁅R,L N) (m : M) :
                                                                                                                                  (f - g) m = f m - g m
                                                                                                                                  @[simp]
                                                                                                                                  theorem LieModuleHom.coe_neg {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] (f : M →ₗ⁅R,L N) :
                                                                                                                                  ⇑(-f) = -f
                                                                                                                                  theorem LieModuleHom.neg_apply {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] (f : M →ₗ⁅R,L N) (m : M) :
                                                                                                                                  (-f) m = -f m
                                                                                                                                  instance LieModuleHom.hasNSMul {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] :
                                                                                                                                  Equations
                                                                                                                                    @[simp]
                                                                                                                                    theorem LieModuleHom.coe_nsmul {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] (n : ) (f : M →ₗ⁅R,L N) :
                                                                                                                                    ⇑(n f) = n f
                                                                                                                                    theorem LieModuleHom.nsmul_apply {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] (n : ) (f : M →ₗ⁅R,L N) (m : M) :
                                                                                                                                    (n f) m = n f m
                                                                                                                                    instance LieModuleHom.hasZSMul {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] :
                                                                                                                                    Equations
                                                                                                                                      @[simp]
                                                                                                                                      theorem LieModuleHom.coe_zsmul {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] (z : ) (f : M →ₗ⁅R,L N) :
                                                                                                                                      ⇑(z f) = z f
                                                                                                                                      theorem LieModuleHom.zsmul_apply {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] (z : ) (f : M →ₗ⁅R,L N) (m : M) :
                                                                                                                                      (z f) m = z f m
                                                                                                                                      instance LieModuleHom.instAddCommGroup {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] :
                                                                                                                                      Equations
                                                                                                                                        instance LieModuleHom.instSMul {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] [LieAlgebra R L] [LieModule R L N] :
                                                                                                                                        Equations
                                                                                                                                          @[simp]
                                                                                                                                          theorem LieModuleHom.coe_smul {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] [LieAlgebra R L] [LieModule R L N] (t : R) (f : M →ₗ⁅R,L N) :
                                                                                                                                          ⇑(t f) = t f
                                                                                                                                          theorem LieModuleHom.smul_apply {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] [LieAlgebra R L] [LieModule R L N] (t : R) (f : M →ₗ⁅R,L N) (m : M) :
                                                                                                                                          (t f) m = t f m
                                                                                                                                          instance LieModuleHom.instModule {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] [LieAlgebra R L] [LieModule R L N] :
                                                                                                                                          Equations
                                                                                                                                            structure LieModuleEquiv (R : Type u) (L : Type v) (M : Type w) (N : Type w₁) [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] extends M →ₗ⁅R,L N :
                                                                                                                                            Type (max w w₁)

                                                                                                                                            An equivalence of Lie algebra modules (denoted as M ≃ₗ⁅R,L⁆ N) is a linear equivalence which is also a morphism of Lie algebra modules.

                                                                                                                                            Instances For

                                                                                                                                              An equivalence of Lie algebra modules (denoted as M ≃ₗ⁅R,L⁆ N) is a linear equivalence which is also a morphism of Lie algebra modules.

                                                                                                                                              Equations
                                                                                                                                                Instances For
                                                                                                                                                  def LieModuleEquiv.toLinearEquiv {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] (e : M ≃ₗ⁅R,L N) :

                                                                                                                                                  View an equivalence of Lie modules as a linear equivalence.

                                                                                                                                                  Equations
                                                                                                                                                    Instances For
                                                                                                                                                      def LieModuleEquiv.toEquiv {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] (e : M ≃ₗ⁅R,L N) :
                                                                                                                                                      M N

                                                                                                                                                      View an equivalence of Lie modules as a type level equivalence.

                                                                                                                                                      Equations
                                                                                                                                                        Instances For
                                                                                                                                                          instance LieModuleEquiv.hasCoeToEquiv {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] :
                                                                                                                                                          CoeOut (M ≃ₗ⁅R,L N) (M N)
                                                                                                                                                          Equations
                                                                                                                                                            instance LieModuleEquiv.hasCoeToLieModuleHom {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] :
                                                                                                                                                            Equations
                                                                                                                                                              instance LieModuleEquiv.hasCoeToLinearEquiv {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] :
                                                                                                                                                              Equations
                                                                                                                                                                instance LieModuleEquiv.instEquivLike {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] :
                                                                                                                                                                Equations
                                                                                                                                                                  @[simp]
                                                                                                                                                                  theorem LieModuleEquiv.coe_coe {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] (e : M ≃ₗ⁅R,L N) :
                                                                                                                                                                  e.toLieModuleHom = e
                                                                                                                                                                  theorem LieModuleEquiv.injective {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] (e : M ≃ₗ⁅R,L N) :
                                                                                                                                                                  theorem LieModuleEquiv.surjective {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] (e : M ≃ₗ⁅R,L N) :
                                                                                                                                                                  @[simp]
                                                                                                                                                                  theorem LieModuleEquiv.toEquiv_mk {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] (f : M →ₗ⁅R,L N) (g : NM) (h₁ : Function.LeftInverse g (↑f).toFun) (h₂ : Function.RightInverse g (↑f).toFun) :
                                                                                                                                                                  { toLieModuleHom := f, invFun := g, left_inv := h₁, right_inv := h₂ }.toEquiv = { toFun := f, invFun := g, left_inv := h₁, right_inv := h₂ }
                                                                                                                                                                  @[simp]
                                                                                                                                                                  theorem LieModuleEquiv.coe_mk {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] (f : M →ₗ⁅R,L N) (invFun : NM) (h₁ : Function.LeftInverse invFun (↑f).toFun) (h₂ : Function.RightInverse invFun (↑f).toFun) :
                                                                                                                                                                  { toLieModuleHom := f, invFun := invFun, left_inv := h₁, right_inv := h₂ } = f
                                                                                                                                                                  theorem LieModuleEquiv.coe_toLieModuleHom {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] (e : M ≃ₗ⁅R,L N) :
                                                                                                                                                                  e.toLieModuleHom = e
                                                                                                                                                                  @[simp]
                                                                                                                                                                  theorem LieModuleEquiv.coe_toLinearEquiv {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] (e : M ≃ₗ⁅R,L N) :
                                                                                                                                                                  e.toLinearEquiv = e
                                                                                                                                                                  theorem LieModuleEquiv.ext {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] (e₁ e₂ : M ≃ₗ⁅R,L N) (h : ∀ (m : M), e₁ m = e₂ m) :
                                                                                                                                                                  e₁ = e₂
                                                                                                                                                                  theorem LieModuleEquiv.ext_iff {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] {e₁ e₂ : M ≃ₗ⁅R,L N} :
                                                                                                                                                                  e₁ = e₂ ∀ (m : M), e₁ m = e₂ m
                                                                                                                                                                  instance LieModuleEquiv.instOne {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [AddCommGroup M] [Module R M] [LieRingModule L M] :
                                                                                                                                                                  Equations
                                                                                                                                                                    @[simp]
                                                                                                                                                                    theorem LieModuleEquiv.one_apply {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [AddCommGroup M] [Module R M] [LieRingModule L M] (m : M) :
                                                                                                                                                                    1 m = m
                                                                                                                                                                    instance LieModuleEquiv.instInhabited {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [AddCommGroup M] [Module R M] [LieRingModule L M] :
                                                                                                                                                                    Equations
                                                                                                                                                                      def LieModuleEquiv.refl {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [AddCommGroup M] [Module R M] [LieRingModule L M] :

                                                                                                                                                                      Lie module equivalences are reflexive.

                                                                                                                                                                      Equations
                                                                                                                                                                        Instances For
                                                                                                                                                                          @[simp]
                                                                                                                                                                          theorem LieModuleEquiv.refl_apply {R : Type u} {L : Type v} {M : Type w} [CommRing R] [LieRing L] [AddCommGroup M] [Module R M] [LieRingModule L M] (m : M) :
                                                                                                                                                                          refl m = m
                                                                                                                                                                          def LieModuleEquiv.symm {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] (e : M ≃ₗ⁅R,L N) :

                                                                                                                                                                          Lie module equivalences are symmetric.

                                                                                                                                                                          Equations
                                                                                                                                                                            Instances For
                                                                                                                                                                              @[simp]
                                                                                                                                                                              theorem LieModuleEquiv.apply_symm_apply {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] (e : M ≃ₗ⁅R,L N) (x : N) :
                                                                                                                                                                              e (e.symm x) = x
                                                                                                                                                                              @[simp]
                                                                                                                                                                              theorem LieModuleEquiv.symm_apply_apply {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] (e : M ≃ₗ⁅R,L N) (x : M) :
                                                                                                                                                                              e.symm (e x) = x
                                                                                                                                                                              theorem LieModuleEquiv.apply_eq_iff_eq_symm_apply {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] {m : M} {n : N} (e : M ≃ₗ⁅R,L N) :
                                                                                                                                                                              e m = n m = e.symm n
                                                                                                                                                                              @[simp]
                                                                                                                                                                              theorem LieModuleEquiv.symm_symm {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] (e : M ≃ₗ⁅R,L N) :
                                                                                                                                                                              e.symm.symm = e
                                                                                                                                                                              def LieModuleEquiv.trans {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} {P : Type w₂} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [AddCommGroup P] [Module R M] [Module R N] [Module R P] [LieRingModule L M] [LieRingModule L N] [LieRingModule L P] (e₁ : M ≃ₗ⁅R,L N) (e₂ : N ≃ₗ⁅R,L P) :

                                                                                                                                                                              Lie module equivalences are transitive.

                                                                                                                                                                              Equations
                                                                                                                                                                                Instances For
                                                                                                                                                                                  @[simp]
                                                                                                                                                                                  theorem LieModuleEquiv.trans_apply {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} {P : Type w₂} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [AddCommGroup P] [Module R M] [Module R N] [Module R P] [LieRingModule L M] [LieRingModule L N] [LieRingModule L P] (e₁ : M ≃ₗ⁅R,L N) (e₂ : N ≃ₗ⁅R,L P) (m : M) :
                                                                                                                                                                                  (e₁.trans e₂) m = e₂ (e₁ m)
                                                                                                                                                                                  @[simp]
                                                                                                                                                                                  theorem LieModuleEquiv.symm_trans {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} {P : Type w₂} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [AddCommGroup P] [Module R M] [Module R N] [Module R P] [LieRingModule L M] [LieRingModule L N] [LieRingModule L P] (e₁ : M ≃ₗ⁅R,L N) (e₂ : N ≃ₗ⁅R,L P) :
                                                                                                                                                                                  (e₁.trans e₂).symm = e₂.symm.trans e₁.symm
                                                                                                                                                                                  @[simp]
                                                                                                                                                                                  theorem LieModuleEquiv.self_trans_symm {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] (e : M ≃ₗ⁅R,L N) :
                                                                                                                                                                                  @[simp]
                                                                                                                                                                                  theorem LieModuleEquiv.symm_trans_self {R : Type u} {L : Type v} {M : Type w} {N : Type w₁} [CommRing R] [LieRing L] [AddCommGroup M] [AddCommGroup N] [Module R M] [Module R N] [LieRingModule L M] [LieRingModule L N] (e : M ≃ₗ⁅R,L N) :