Documentation

Mathlib.Algebra.Order.Group.Equiv

Add/Mul equivalence for order type synonyms #

def toLexMulEquiv (α : Type u_1) [Mul α] :
α ≃* Lex α

toLex as a MulEquiv.

Equations
    Instances For
      def toLexAddEquiv (α : Type u_1) [Add α] :
      α ≃+ Lex α

      toLex as an AddEquiv.

      Equations
        Instances For
          def ofLexMulEquiv (α : Type u_1) [Mul α] :
          Lex α ≃* α

          ofLex as a MulEquiv.

          Equations
            Instances For
              def ofLexAddEquiv (α : Type u_1) [Add α] :
              Lex α ≃+ α

              ofLex as an AddEquiv.

              Equations
                Instances For
                  @[simp]
                  theorem coe_toLexMulEquiv (α : Type u_1) [Mul α] :
                  (toLexMulEquiv α) = toLex
                  @[simp]
                  theorem coe_toLexAddEquiv (α : Type u_1) [Add α] :
                  (toLexAddEquiv α) = toLex
                  @[simp]
                  theorem coe_ofLexMulEquiv (α : Type u_1) [Mul α] :
                  (ofLexMulEquiv α) = ofLex
                  @[simp]
                  theorem coe_ofLexAddEquiv (α : Type u_1) [Add α] :
                  (ofLexAddEquiv α) = ofLex
                  @[simp]
                  theorem symm_toLexMulEquiv (α : Type u_1) [Mul α] :
                  @[simp]
                  theorem symm_toLexAddEquiv (α : Type u_1) [Add α] :
                  @[simp]
                  theorem symm_ofLexMulEquiv (α : Type u_1) [Mul α] :
                  @[simp]
                  theorem symm_ofLexAddEquiv (α : Type u_1) [Add α] :
                  @[simp]
                  theorem toEquiv_toLexMulEquiv (α : Type u_1) [Mul α] :
                  @[simp]
                  theorem toEquiv_toLexAddEquiv (α : Type u_1) [Add α] :
                  @[simp]
                  theorem toEquiv_ofLexMulEquiv (α : Type u_1) [Mul α] :
                  @[simp]
                  theorem toEquiv_ofLexAddEquiv (α : Type u_1) [Add α] :