Documentation

Mathlib.Algebra.Ring.Action.Invariant

Subrings invariant under an action #

If a monoid acts on a ring via a MulSemiringAction, then IsInvariantSubring is a predicate on subrings asserting that the subring is fixed elementwise by the action.

class IsInvariantSubring (M : Type u_1) {R : Type u_2} [Monoid M] [Ring R] [MulSemiringAction M R] (S : Subring R) :

A typeclass for subrings invariant under a MulSemiringAction.

  • smul_mem (m : M) {x : R} : x Sm x S
Instances
    Equations
      def IsInvariantSubring.subtypeHom (M : Type u_1) [Monoid M] {R' : Type u_2} [Ring R'] [MulSemiringAction M R'] (U : Subring R') [IsInvariantSubring M U] :
      U →+*[M] R'

      The canonical inclusion from an invariant subring.

      Equations
        Instances For
          @[simp]
          theorem IsInvariantSubring.coe_subtypeHom (M : Type u_1) [Monoid M] {R' : Type u_2} [Ring R'] [MulSemiringAction M R'] (U : Subring R') [IsInvariantSubring M U] :
          @[simp]
          theorem IsInvariantSubring.coe_subtypeHom' (M : Type u_1) [Monoid M] {R' : Type u_2} [Ring R'] [MulSemiringAction M R'] (U : Subring R') [IsInvariantSubring M U] :
          (subtypeHom M U) = U.subtype