Documentation

Mathlib.Algebra.Ring.Opposite

Ring structures on the multiplicative opposite #

Equations
    Equations
      Equations
        Equations
          Equations
            @[simp]
            theorem MulOpposite.op_natCast {R : Type u_1} [NatCast R] (n : ) :
            op n = n
            @[simp]
            theorem AddOpposite.op_natCast {R : Type u_1} [NatCast R] (n : ) :
            op n = n
            @[simp]
            theorem MulOpposite.op_ofNat {R : Type u_1} [NatCast R] (n : ) [n.AtLeastTwo] :
            @[simp]
            theorem AddOpposite.op_ofNat {R : Type u_1} [NatCast R] (n : ) [n.AtLeastTwo] :
            @[simp]
            theorem MulOpposite.op_intCast {R : Type u_1} [IntCast R] (n : ) :
            op n = n
            @[simp]
            theorem AddOpposite.op_intCast {R : Type u_1} [IntCast R] (n : ) :
            op n = n
            @[simp]
            theorem MulOpposite.unop_natCast {R : Type u_1} [NatCast R] (n : ) :
            unop n = n
            @[simp]
            theorem AddOpposite.unop_natCast {R : Type u_1} [NatCast R] (n : ) :
            unop n = n
            @[simp]
            @[simp]
            @[simp]
            theorem MulOpposite.unop_intCast {R : Type u_1} [IntCast R] (n : ) :
            unop n = n
            @[simp]
            theorem AddOpposite.unop_intCast {R : Type u_1} [IntCast R] (n : ) :
            unop n = n
            instance MulOpposite.instRing {R : Type u_1} [Ring R] :
            Equations
              Equations
                instance AddOpposite.instRing {R : Type u_1} [Ring R] :
                Equations
                  def NonUnitalRingHom.toOpposite {R : Type u_2} {S : Type u_3} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] (f : R →ₙ+* S) (hf : ∀ (x y : R), Commute (f x) (f y)) :

                  A non-unital ring homomorphism f : R →ₙ+* S such that f x commutes with f y for all x, y defines a non-unital ring homomorphism to Sᵐᵒᵖ.

                  Equations
                    Instances For
                      @[simp]
                      theorem NonUnitalRingHom.toOpposite_apply {R : Type u_2} {S : Type u_3} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] (f : R →ₙ+* S) (hf : ∀ (x y : R), Commute (f x) (f y)) :
                      def NonUnitalRingHom.fromOpposite {R : Type u_2} {S : Type u_3} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] (f : R →ₙ+* S) (hf : ∀ (x y : R), Commute (f x) (f y)) :

                      A non-unital ring homomorphism f : R →ₙ* S such that f x commutes with f y for all x, y defines a non-unital ring homomorphism from Rᵐᵒᵖ.

                      Equations
                        Instances For
                          @[simp]
                          theorem NonUnitalRingHom.fromOpposite_apply {R : Type u_2} {S : Type u_3} [NonUnitalNonAssocSemiring R] [NonUnitalNonAssocSemiring S] (f : R →ₙ+* S) (hf : ∀ (x y : R), Commute (f x) (f y)) :

                          A non-unital ring hom R →ₙ+* S can equivalently be viewed as a non-unital ring hom Rᵐᵒᵖ →+* Sᵐᵒᵖ. This is the action of the (fully faithful) ᵐᵒᵖ-functor on morphisms.

                          Equations
                            Instances For

                              The 'unopposite' of a non-unital ring hom Rᵐᵒᵖ →ₙ+* Sᵐᵒᵖ. Inverse to NonUnitalRingHom.op.

                              Equations
                                Instances For
                                  def RingHom.toOpposite {R : Type u_2} {S : Type u_3} [Semiring R] [Semiring S] (f : R →+* S) (hf : ∀ (x y : R), Commute (f x) (f y)) :

                                  A ring homomorphism f : R →+* S such that f x commutes with f y for all x, y defines a ring homomorphism to Sᵐᵒᵖ.

                                  Equations
                                    Instances For
                                      @[simp]
                                      theorem RingHom.toOpposite_apply {R : Type u_2} {S : Type u_3} [Semiring R] [Semiring S] (f : R →+* S) (hf : ∀ (x y : R), Commute (f x) (f y)) :
                                      def RingHom.fromOpposite {R : Type u_2} {S : Type u_3} [Semiring R] [Semiring S] (f : R →+* S) (hf : ∀ (x y : R), Commute (f x) (f y)) :

                                      A ring homomorphism f : R →+* S such that f x commutes with f y for all x, y defines a ring homomorphism from Rᵐᵒᵖ.

                                      Equations
                                        Instances For
                                          @[simp]
                                          theorem RingHom.fromOpposite_apply {R : Type u_2} {S : Type u_3} [Semiring R] [Semiring S] (f : R →+* S) (hf : ∀ (x y : R), Commute (f x) (f y)) :

                                          A ring hom R →+* S can equivalently be viewed as a ring hom Rᵐᵒᵖ →+* Sᵐᵒᵖ. This is the action of the (fully faithful) ᵐᵒᵖ-functor on morphisms.

                                          Equations
                                            Instances For
                                              @[simp]
                                              theorem RingHom.op_symm_apply_apply {R : Type u_2} {S : Type u_3} [NonAssocSemiring R] [NonAssocSemiring S] (f : Rᵐᵒᵖ →+* Sᵐᵒᵖ) (a✝ : R) :
                                              @[simp]
                                              theorem RingHom.op_apply_apply {R : Type u_2} {S : Type u_3} [NonAssocSemiring R] [NonAssocSemiring S] (f : R →+* S) (a✝ : Rᵐᵒᵖ) :
                                              (op f) a✝ = MulOpposite.op (f (MulOpposite.unop a✝))

                                              The 'unopposite' of a ring hom Rᵐᵒᵖ →+* Sᵐᵒᵖ. Inverse to RingHom.op.

                                              Equations
                                                Instances For