Documentation

Mathlib.Algebra.RingQuot

Quotients of semirings #

In this file, we directly define the quotient of a semiring by any relation, by building a bigger relation that represents the ideal generated by that relation.

We prove the universal properties of the quotient, and recommend avoiding relying on the actual definition, which is made irreducible for this purpose.

Since everything runs in parallel for quotients of R-algebras, we do that case at the same time.

instance RingCon.instAlgebraQuotient {S : Type uS} [CommSemiring S] {A : Type uA} [Semiring A] [Algebra S A] (c : RingCon A) :
Equations
    @[simp]
    theorem RingCon.coe_algebraMap {S : Type uS} [CommSemiring S] {A : Type uA} [Semiring A] [Algebra S A] (c : RingCon A) (s : S) :
    ((algebraMap S A) s) = (algebraMap S c.Quotient) s
    inductive RingQuot.Rel {R : Type uR} [Semiring R] (r : RRProp) :
    RRProp

    Given an arbitrary relation r on a ring, we strengthen it to a relation Rel r, such that the equivalence relation generated by Rel r has x ~ y if and only if x - y is in the ideal generated by elements a - b such that r a b.

    Instances For
      theorem RingQuot.Rel.add_right {R : Type uR} [Semiring R] {r : RRProp} a b c : R (h : Rel r b c) :
      Rel r (a + b) (a + c)
      theorem RingQuot.Rel.neg {R : Type uR} [Ring R] {r : RRProp} a b : R (h : Rel r a b) :
      Rel r (-a) (-b)
      theorem RingQuot.Rel.sub_left {R : Type uR} [Ring R] {r : RRProp} a b c : R (h : Rel r a b) :
      Rel r (a - c) (b - c)
      theorem RingQuot.Rel.sub_right {R : Type uR} [Ring R] {r : RRProp} a b c : R (h : Rel r b c) :
      Rel r (a - b) (a - c)
      theorem RingQuot.Rel.smul {S : Type uS} [CommSemiring S] {A : Type uA} [Semiring A] [Algebra S A] {r : AAProp} (k : S) a b : A (h : Rel r a b) :
      Rel r (k a) (k b)
      def RingQuot.ringCon {R : Type uR} [Semiring R] (r : RRProp) :

      EqvGen (RingQuot.Rel r) is a ring congruence.

      Equations
        Instances For
          theorem RingQuot.eqvGen_rel_eq {R : Type uR} [Semiring R] (r : RRProp) :
          structure RingQuot {R : Type uR} [Semiring R] (r : RRProp) :
          Type uR

          The quotient of a ring by an arbitrary relation.

          Instances For
            instance RingQuot.instNatCast {R : Type uR} [Semiring R] (r : RRProp) :
            Equations
              instance RingQuot.instZero {R : Type uR} [Semiring R] (r : RRProp) :
              Equations
                instance RingQuot.instOne {R : Type uR} [Semiring R] (r : RRProp) :
                Equations
                  instance RingQuot.instAdd {R : Type uR} [Semiring R] (r : RRProp) :
                  Equations
                    instance RingQuot.instMul {R : Type uR} [Semiring R] (r : RRProp) :
                    Equations
                      instance RingQuot.instNatPow {R : Type uR} [Semiring R] (r : RRProp) :
                      Equations
                        instance RingQuot.instNeg {R : Type uR} [Ring R] (r : RRProp) :
                        Equations
                          instance RingQuot.instSub {R : Type uR} [Ring R] (r : RRProp) :
                          Equations
                            instance RingQuot.instSMulOfAlgebra {R : Type uR} [Semiring R] {S : Type uS} [CommSemiring S] (r : RRProp) [Algebra S R] :
                            Equations
                              theorem RingQuot.zero_quot {R : Type uR} [Semiring R] (r : RRProp) :
                              { toQuot := Quot.mk (Rel r) 0 } = 0
                              theorem RingQuot.one_quot {R : Type uR} [Semiring R] (r : RRProp) :
                              { toQuot := Quot.mk (Rel r) 1 } = 1
                              theorem RingQuot.add_quot {R : Type uR} [Semiring R] (r : RRProp) {a b : R} :
                              { toQuot := Quot.mk (Rel r) a } + { toQuot := Quot.mk (Rel r) b } = { toQuot := Quot.mk (Rel r) (a + b) }
                              theorem RingQuot.mul_quot {R : Type uR} [Semiring R] (r : RRProp) {a b : R} :
                              { toQuot := Quot.mk (Rel r) a } * { toQuot := Quot.mk (Rel r) b } = { toQuot := Quot.mk (Rel r) (a * b) }
                              theorem RingQuot.pow_quot {R : Type uR} [Semiring R] (r : RRProp) {a : R} {n : } :
                              { toQuot := Quot.mk (Rel r) a } ^ n = { toQuot := Quot.mk (Rel r) (a ^ n) }
                              theorem RingQuot.neg_quot {R : Type uR} [Ring R] (r : RRProp) {a : R} :
                              -{ toQuot := Quot.mk (Rel r) a } = { toQuot := Quot.mk (Rel r) (-a) }
                              theorem RingQuot.sub_quot {R : Type uR} [Ring R] (r : RRProp) {a b : R} :
                              { toQuot := Quot.mk (Rel r) a } - { toQuot := Quot.mk (Rel r) b } = { toQuot := Quot.mk (Rel r) (a - b) }
                              theorem RingQuot.smul_quot {R : Type uR} [Semiring R] {S : Type uS} [CommSemiring S] (r : RRProp) [Algebra S R] {n : S} {a : R} :
                              n { toQuot := Quot.mk (Rel r) a } = { toQuot := Quot.mk (Rel r) (n a) }
                              instance RingQuot.instIsScalarTower {R : Type uR} [Semiring R] {S : Type uS} [CommSemiring S] {T : Type uT} (r : RRProp) [CommSemiring T] [SMul S T] [Algebra S R] [Algebra T R] [IsScalarTower S T R] :
                              instance RingQuot.instSMulCommClass {R : Type uR} [Semiring R] {S : Type uS} [CommSemiring S] {T : Type uT} (r : RRProp) [CommSemiring T] [Algebra S R] [Algebra T R] [SMulCommClass S T R] :
                              instance RingQuot.instAddCommMonoid {R : Type uR} [Semiring R] (r : RRProp) :
                              Equations
                                instance RingQuot.instMonoidWithZero {R : Type uR} [Semiring R] (r : RRProp) :
                                Equations
                                  instance RingQuot.instSemiring {R : Type uR} [Semiring R] (r : RRProp) :
                                  Equations
                                    instance RingQuot.instRing {R : Type uR} [Ring R] (r : RRProp) :
                                    Equations
                                      instance RingQuot.instCommSemiring {R : Type uR} [CommSemiring R] (r : RRProp) :
                                      Equations
                                        instance RingQuot.instCommRing {R : Type uR} [CommRing R] (r : RRProp) :
                                        Equations
                                          instance RingQuot.instInhabited {R : Type uR} [Semiring R] (r : RRProp) :
                                          Equations
                                            instance RingQuot.instAlgebra {R : Type uR} [Semiring R] {S : Type uS} [CommSemiring S] [Algebra S R] (r : RRProp) :
                                            Equations
                                              @[irreducible]
                                              def RingQuot.mkRingHom {R : Type u_1} [Semiring R] (r : RRProp) :

                                              The quotient map from a ring to its quotient, as a homomorphism of rings.

                                              Equations
                                                Instances For
                                                  theorem RingQuot.mkRingHom_def {R : Type u_1} [Semiring R] (r : RRProp) :
                                                  mkRingHom r = { toFun := fun (x : R) => { toQuot := Quot.mk (Rel r) x }, map_one' := , map_mul' := , map_zero' := , map_add' := }
                                                  theorem RingQuot.mkRingHom_rel {R : Type uR} [Semiring R] {r : RRProp} {x y : R} (w : r x y) :
                                                  (mkRingHom r) x = (mkRingHom r) y
                                                  theorem RingQuot.ringQuot_ext {R : Type uR} [Semiring R] {T : Type uT} [NonAssocSemiring T] {r : RRProp} (f g : RingQuot r →+* T) (w : f.comp (mkRingHom r) = g.comp (mkRingHom r)) :
                                                  f = g
                                                  theorem RingQuot.ringQuot_ext_iff {R : Type uR} [Semiring R] {T : Type uT} [NonAssocSemiring T] {r : RRProp} {f g : RingQuot r →+* T} :
                                                  f = g f.comp (mkRingHom r) = g.comp (mkRingHom r)
                                                  @[irreducible]
                                                  def RingQuot.preLift {R : Type u_1} [Semiring R] {T : Type u_2} [Semiring T] {r : RRProp} {f : R →+* T} (h : ∀ ⦃x y : R⦄, r x yf x = f y) :
                                                  Equations
                                                    Instances For
                                                      theorem RingQuot.preLift_def {R : Type u_1} [Semiring R] {T : Type u_2} [Semiring T] {r : RRProp} {f : R →+* T} (h : ∀ ⦃x y : R⦄, r x yf x = f y) :
                                                      preLift h = { toFun := fun (x : RingQuot r) => Quot.lift f x.toQuot, map_one' := , map_mul' := , map_zero' := , map_add' := }
                                                      @[irreducible]
                                                      def RingQuot.lift {R : Type u_1} [Semiring R] {T : Type u_2} [Semiring T] {r : RRProp} :
                                                      { f : R →+* T // ∀ ⦃x y : R⦄, r x yf x = f y } (RingQuot r →+* T)

                                                      Any ring homomorphism f : R →+* T which respects a relation r : R → R → Prop factors uniquely through a morphism RingQuot r →+* T.

                                                      Equations
                                                        Instances For
                                                          theorem RingQuot.lift_def {R : Type u_1} [Semiring R] {T : Type u_2} [Semiring T] {r : RRProp} :
                                                          lift = { toFun := fun (f : { f : R →+* T // ∀ ⦃x y : R⦄, r x yf x = f y }) => preLift , invFun := fun (F : RingQuot r →+* T) => F.comp (mkRingHom r), , left_inv := , right_inv := }
                                                          @[simp]
                                                          theorem RingQuot.lift_mkRingHom_apply {R : Type uR} [Semiring R] {T : Type uT} [Semiring T] (f : R →+* T) {r : RRProp} (w : ∀ ⦃x y : R⦄, r x yf x = f y) (x : R) :
                                                          (lift f, w) ((mkRingHom r) x) = f x
                                                          theorem RingQuot.lift_unique {R : Type uR} [Semiring R] {T : Type uT} [Semiring T] (f : R →+* T) {r : RRProp} (w : ∀ ⦃x y : R⦄, r x yf x = f y) (g : RingQuot r →+* T) (h : g.comp (mkRingHom r) = f) :
                                                          g = lift f, w
                                                          theorem RingQuot.eq_lift_comp_mkRingHom {R : Type uR} [Semiring R] {T : Type uT} [Semiring T] {r : RRProp} (f : RingQuot r →+* T) :
                                                          f = lift f.comp (mkRingHom r),

                                                          We now verify that in the case of a commutative ring, the RingQuot construction agrees with the quotient by the appropriate ideal.

                                                          The universal ring homomorphism from RingQuot r to B ⧸ Ideal.ofRel r.

                                                          Equations
                                                            Instances For
                                                              @[simp]

                                                              The universal ring homomorphism from B ⧸ Ideal.ofRel r to RingQuot r.

                                                              Equations
                                                                Instances For
                                                                  @[simp]

                                                                  The ring equivalence between RingQuot r and (Ideal.ofRel r).quotient

                                                                  Equations
                                                                    Instances For
                                                                      theorem RingQuot.mkAlgHom_def (S : Type u_1) [CommSemiring S] {A : Type u_2} [Semiring A] [Algebra S A] (s : AAProp) :
                                                                      mkAlgHom S s = let __src := mkRingHom s; { toRingHom := __src, commutes' := }
                                                                      @[irreducible]
                                                                      def RingQuot.mkAlgHom (S : Type u_1) [CommSemiring S] {A : Type u_2} [Semiring A] [Algebra S A] (s : AAProp) :

                                                                      The quotient map from an S-algebra to its quotient, as a homomorphism of S-algebras.

                                                                      Equations
                                                                        Instances For
                                                                          @[simp]
                                                                          theorem RingQuot.mkAlgHom_coe (S : Type uS) [CommSemiring S] {A : Type uA} [Semiring A] [Algebra S A] (s : AAProp) :
                                                                          (mkAlgHom S s) = mkRingHom s
                                                                          theorem RingQuot.mkAlgHom_rel (S : Type uS) [CommSemiring S] {A : Type uA} [Semiring A] [Algebra S A] {s : AAProp} {x y : A} (w : s x y) :
                                                                          (mkAlgHom S s) x = (mkAlgHom S s) y
                                                                          theorem RingQuot.mkAlgHom_surjective (S : Type uS) [CommSemiring S] {A : Type uA} [Semiring A] [Algebra S A] (s : AAProp) :
                                                                          theorem RingQuot.ringQuot_ext' (S : Type uS) [CommSemiring S] {A : Type uA} [Semiring A] [Algebra S A] {B : Type u₄} [Semiring B] [Algebra S B] {s : AAProp} (f g : RingQuot s →ₐ[S] B) (w : f.comp (mkAlgHom S s) = g.comp (mkAlgHom S s)) :
                                                                          f = g
                                                                          theorem RingQuot.ringQuot_ext'_iff {S : Type uS} [CommSemiring S] {A : Type uA} [Semiring A] [Algebra S A] {B : Type u₄} [Semiring B] [Algebra S B] {s : AAProp} {f g : RingQuot s →ₐ[S] B} :
                                                                          f = g f.comp (mkAlgHom S s) = g.comp (mkAlgHom S s)
                                                                          theorem RingQuot.preLiftAlgHom_def (S : Type u_1) [CommSemiring S] {A : Type u_2} [Semiring A] [Algebra S A] {B : Type u_3} [Semiring B] [Algebra S B] {s : AAProp} {f : A →ₐ[S] B} (h : ∀ ⦃x y : A⦄, s x yf x = f y) :
                                                                          preLiftAlgHom S h = { toFun := fun (x : RingQuot s) => Quot.lift f x.toQuot, map_one' := , map_mul' := , map_zero' := , map_add' := , commutes' := }
                                                                          @[irreducible]
                                                                          def RingQuot.preLiftAlgHom (S : Type u_1) [CommSemiring S] {A : Type u_2} [Semiring A] [Algebra S A] {B : Type u_3} [Semiring B] [Algebra S B] {s : AAProp} {f : A →ₐ[S] B} (h : ∀ ⦃x y : A⦄, s x yf x = f y) :
                                                                          Equations
                                                                            Instances For
                                                                              theorem RingQuot.liftAlgHom_def (S : Type u_1) [CommSemiring S] {A : Type u_2} [Semiring A] [Algebra S A] {B : Type u_3} [Semiring B] [Algebra S B] {s : AAProp} :
                                                                              liftAlgHom S = { toFun := fun (f' : { f : A →ₐ[S] B // ∀ ⦃x y : A⦄, s x yf x = f y }) => preLiftAlgHom S , invFun := fun (F : RingQuot s →ₐ[S] B) => F.comp (mkAlgHom S s), , left_inv := , right_inv := }
                                                                              @[irreducible]
                                                                              def RingQuot.liftAlgHom (S : Type u_1) [CommSemiring S] {A : Type u_2} [Semiring A] [Algebra S A] {B : Type u_3} [Semiring B] [Algebra S B] {s : AAProp} :
                                                                              { f : A →ₐ[S] B // ∀ ⦃x y : A⦄, s x yf x = f y } (RingQuot s →ₐ[S] B)

                                                                              Any S-algebra homomorphism f : A →ₐ[S] B which respects a relation s : A → A → Prop factors uniquely through a morphism RingQuot s →ₐ[S] B.

                                                                              Equations
                                                                                Instances For
                                                                                  @[simp]
                                                                                  theorem RingQuot.liftAlgHom_mkAlgHom_apply (S : Type uS) [CommSemiring S] {A : Type uA} [Semiring A] [Algebra S A] {B : Type u₄} [Semiring B] [Algebra S B] (f : A →ₐ[S] B) {s : AAProp} (w : ∀ ⦃x y : A⦄, s x yf x = f y) (x : A) :
                                                                                  ((liftAlgHom S) f, w) ((mkAlgHom S s) x) = f x
                                                                                  theorem RingQuot.liftAlgHom_unique (S : Type uS) [CommSemiring S] {A : Type uA} [Semiring A] [Algebra S A] {B : Type u₄} [Semiring B] [Algebra S B] (f : A →ₐ[S] B) {s : AAProp} (w : ∀ ⦃x y : A⦄, s x yf x = f y) (g : RingQuot s →ₐ[S] B) (h : g.comp (mkAlgHom S s) = f) :
                                                                                  g = (liftAlgHom S) f, w
                                                                                  theorem RingQuot.eq_liftAlgHom_comp_mkAlgHom (S : Type uS) [CommSemiring S] {A : Type uA} [Semiring A] [Algebra S A] {B : Type u₄} [Semiring B] [Algebra S B] {s : AAProp} (f : RingQuot s →ₐ[S] B) :
                                                                                  f = (liftAlgHom S) f.comp (mkAlgHom S s),