Documentation

Mathlib.Algebra.Star.Conjneg

Conjugation-negation operator #

This file defines the conjugation-negation operator, useful in Fourier analysis.

The way this operator enters the picture is that the adjoint of convolution with a function f is convolution with conjneg f.

def conjneg {G : Type u_2} {R : Type u_3} [AddGroup G] [CommSemiring R] [StarRing R] (f : GR) :
GR

Conjugation-negation. Sends f to fun x ↦ conj (f (-x)).

Equations
    Instances For
      @[simp]
      theorem conjneg_apply {G : Type u_2} {R : Type u_3} [AddGroup G] [CommSemiring R] [StarRing R] (f : GR) (x : G) :
      conjneg f x = (starRingEnd R) (f (-x))
      @[simp]
      theorem conjneg_conjneg {G : Type u_2} {R : Type u_3} [AddGroup G] [CommSemiring R] [StarRing R] (f : GR) :
      @[simp]
      theorem conjneg_inj {G : Type u_2} {R : Type u_3} [AddGroup G] [CommSemiring R] [StarRing R] {f g : GR} :
      theorem conjneg_ne_conjneg {G : Type u_2} {R : Type u_3} [AddGroup G] [CommSemiring R] [StarRing R] {f g : GR} :
      @[simp]
      theorem conjneg_conj {G : Type u_2} {R : Type u_3} [AddGroup G] [CommSemiring R] [StarRing R] (f : GR) :
      conjneg ((starRingEnd (GR)) f) = (starRingEnd (GR)) (conjneg f)
      @[simp]
      theorem conjneg_zero {G : Type u_2} {R : Type u_3} [AddGroup G] [CommSemiring R] [StarRing R] :
      @[simp]
      theorem conjneg_one {G : Type u_2} {R : Type u_3} [AddGroup G] [CommSemiring R] [StarRing R] :
      @[simp]
      theorem conjneg_add {G : Type u_2} {R : Type u_3} [AddGroup G] [CommSemiring R] [StarRing R] (f g : GR) :
      @[simp]
      theorem conjneg_mul {G : Type u_2} {R : Type u_3} [AddGroup G] [CommSemiring R] [StarRing R] (f g : GR) :
      @[simp]
      theorem conjneg_sum {ι : Type u_1} {G : Type u_2} {R : Type u_3} [AddGroup G] [CommSemiring R] [StarRing R] (s : Finset ι) (f : ιGR) :
      conjneg (∑ is, f i) = is, conjneg (f i)
      @[simp]
      theorem conjneg_prod {ι : Type u_1} {G : Type u_2} {R : Type u_3} [AddGroup G] [CommSemiring R] [StarRing R] (s : Finset ι) (f : ιGR) :
      conjneg (∏ is, f i) = is, conjneg (f i)
      @[simp]
      theorem conjneg_eq_zero {G : Type u_2} {R : Type u_3} [AddGroup G] [CommSemiring R] [StarRing R] {f : GR} :
      conjneg f = 0 f = 0
      @[simp]
      theorem conjneg_eq_one {G : Type u_2} {R : Type u_3} [AddGroup G] [CommSemiring R] [StarRing R] {f : GR} :
      conjneg f = 1 f = 1
      theorem conjneg_ne_zero {G : Type u_2} {R : Type u_3} [AddGroup G] [CommSemiring R] [StarRing R] {f : GR} :
      conjneg f 0 f 0
      theorem conjneg_ne_one {G : Type u_2} {R : Type u_3} [AddGroup G] [CommSemiring R] [StarRing R] {f : GR} :
      conjneg f 1 f 1
      theorem sum_conjneg {G : Type u_2} {R : Type u_3} [AddGroup G] [CommSemiring R] [StarRing R] [Fintype G] (f : GR) :
      a : G, conjneg f a = a : G, (starRingEnd R) (f a)
      @[simp]
      theorem support_conjneg {G : Type u_2} {R : Type u_3} [AddGroup G] [CommSemiring R] [StarRing R] (f : GR) :
      def conjnegRingHom {G : Type u_2} {R : Type u_3} [AddGroup G] [CommSemiring R] [StarRing R] :
      (GR) →+* GR

      conjneg bundled as a ring homomorphism.

      Equations
        Instances For
          @[simp]
          theorem conjnegRingHom_apply {G : Type u_2} {R : Type u_3} [AddGroup G] [CommSemiring R] [StarRing R] (f : GR) (a✝ : G) :
          conjnegRingHom f a✝ = conjneg f a✝
          @[simp]
          theorem conjneg_sub {G : Type u_2} {R : Type u_3} [AddGroup G] [CommRing R] [StarRing R] (f g : GR) :
          @[simp]
          theorem conjneg_neg {G : Type u_2} {R : Type u_3} [AddGroup G] [CommRing R] [StarRing R] (f : GR) :