Documentation

Mathlib.AlgebraicGeometry.EllipticCurve.Weierstrass

Weierstrass equations of elliptic curves #

This file defines the structure of an elliptic curve as a nonsingular Weierstrass curve given by a Weierstrass equation, which is mathematically accurate in many cases but also good for computation.

Mathematical background #

Let S be a scheme. The actual category of elliptic curves over S is a large category, whose objects are schemes E equipped with a map E → S, a section S → E, and some axioms (the map is smooth and proper and the fibres are geometrically-connected one-dimensional group varieties). In the special case where S is the spectrum of some commutative ring R whose Picard group is zero (this includes all fields, all PIDs, and many other commutative rings) it can be shown (using a lot of algebro-geometric machinery) that every elliptic curve E is a projective plane cubic isomorphic to a Weierstrass curve given by the equation Y² + a₁XY + a₃Y = X³ + a₂X² + a₄X + a₆ for some aᵢ in R, and such that a certain quantity called the discriminant of E is a unit in R. If R is a field, this quantity divides the discriminant of a cubic polynomial whose roots over a splitting field of R are precisely the X-coordinates of the non-zero 2-torsion points of E.

Main definitions #

Main statements #

Implementation notes #

The definition of elliptic curves in this file makes sense for all commutative rings R, but it only gives a type which can be beefed up to a category which is equivalent to the category of elliptic curves over the spectrum Spec(R) of R in the case that R has trivial Picard group Pic(R) or, slightly more generally, when its 12-torsion is trivial. The issue is that for a general ring R, there might be elliptic curves over Spec(R) in the sense of algebraic geometry which are not globally defined by a cubic equation valid over the entire base.

References #

Tags #

elliptic curve, weierstrass equation, j invariant

Weierstrass curves #

structure WeierstrassCurve (R : Type u) :

A Weierstrass curve Y² + a₁XY + a₃Y = X³ + a₂X² + a₄X + a₆ with parameters aᵢ.

  • a₁ : R

    The a₁ coefficient of a Weierstrass curve.

  • a₂ : R

    The a₂ coefficient of a Weierstrass curve.

  • a₃ : R

    The a₃ coefficient of a Weierstrass curve.

  • a₄ : R

    The a₄ coefficient of a Weierstrass curve.

  • a₆ : R

    The a₆ coefficient of a Weierstrass curve.

Instances For
    theorem WeierstrassCurve.ext {R : Type u} {x y : WeierstrassCurve R} (a₁ : x.a₁ = y.a₁) (a₂ : x.a₂ = y.a₂) (a₃ : x.a₃ = y.a₃) (a₄ : x.a₄ = y.a₄) (a₆ : x.a₆ = y.a₆) :
    x = y
    theorem WeierstrassCurve.ext_iff {R : Type u} {x y : WeierstrassCurve R} :
    x = y x.a₁ = y.a₁ x.a₂ = y.a₂ x.a₃ = y.a₃ x.a₄ = y.a₄ x.a₆ = y.a₆

    Standard quantities #

    The b₂ coefficient of a Weierstrass curve.

    Equations
      Instances For

        The b₄ coefficient of a Weierstrass curve.

        Equations
          Instances For

            The b₆ coefficient of a Weierstrass curve.

            Equations
              Instances For

                The b₈ coefficient of a Weierstrass curve.

                Equations
                  Instances For

                    The c₄ coefficient of a Weierstrass curve.

                    Equations
                      Instances For

                        The c₆ coefficient of a Weierstrass curve.

                        Equations
                          Instances For

                            The discriminant Δ of a Weierstrass curve. If R is a field, then this polynomial vanishes if and only if the cubic curve cut out by this equation is singular. Sometimes only defined up to sign in the literature; we choose the sign used by the LMFDB. For more discussion, see the LMFDB page on discriminants.

                            Equations
                              Instances For
                                theorem WeierstrassCurve.c_relation {R : Type u} [CommRing R] (W : WeierstrassCurve R) :
                                1728 * W.Δ = W.c₄ ^ 3 - W.c₆ ^ 2
                                theorem WeierstrassCurve.b₈_of_char_two {R : Type u} [CommRing R] (W : WeierstrassCurve R) [CharP R 2] :
                                W.b₈ = W.a₁ ^ 2 * W.a₆ + W.a₁ * W.a₃ * W.a₄ + W.a₂ * W.a₃ ^ 2 + W.a₄ ^ 2
                                theorem WeierstrassCurve.Δ_of_char_two {R : Type u} [CommRing R] (W : WeierstrassCurve R) [CharP R 2] :
                                W.Δ = W.a₁ ^ 4 * W.b₈ + W.a₃ ^ 4 + W.a₁ ^ 3 * W.a₃ ^ 3
                                theorem WeierstrassCurve.b₈_of_char_three {R : Type u} [CommRing R] (W : WeierstrassCurve R) [CharP R 3] :
                                W.b₈ = W.a₁ ^ 2 * W.a₆ + W.a₂ * W.a₆ - W.a₁ * W.a₃ * W.a₄ + W.a₂ * W.a₃ ^ 2 - W.a₄ ^ 2
                                theorem WeierstrassCurve.Δ_of_char_three {R : Type u} [CommRing R] (W : WeierstrassCurve R) [CharP R 3] :
                                W.Δ = -W.b₂ ^ 2 * W.b₈ - 8 * W.b₄ ^ 3

                                Maps and base changes #

                                def WeierstrassCurve.map {R : Type u} [CommRing R] (W : WeierstrassCurve R) {A : Type v} [CommRing A] (f : R →+* A) :

                                The Weierstrass curve mapped over a ring homomorphism f : R →+* A.

                                Equations
                                  Instances For
                                    @[simp]
                                    theorem WeierstrassCurve.map_a₄ {R : Type u} [CommRing R] (W : WeierstrassCurve R) {A : Type v} [CommRing A] (f : R →+* A) :
                                    (W.map f).a₄ = f W.a₄
                                    @[simp]
                                    theorem WeierstrassCurve.map_a₂ {R : Type u} [CommRing R] (W : WeierstrassCurve R) {A : Type v} [CommRing A] (f : R →+* A) :
                                    (W.map f).a₂ = f W.a₂
                                    @[simp]
                                    theorem WeierstrassCurve.map_a₁ {R : Type u} [CommRing R] (W : WeierstrassCurve R) {A : Type v} [CommRing A] (f : R →+* A) :
                                    (W.map f).a₁ = f W.a₁
                                    @[simp]
                                    theorem WeierstrassCurve.map_a₆ {R : Type u} [CommRing R] (W : WeierstrassCurve R) {A : Type v} [CommRing A] (f : R →+* A) :
                                    (W.map f).a₆ = f W.a₆
                                    @[simp]
                                    theorem WeierstrassCurve.map_a₃ {R : Type u} [CommRing R] (W : WeierstrassCurve R) {A : Type v} [CommRing A] (f : R →+* A) :
                                    (W.map f).a₃ = f W.a₃
                                    @[reducible, inline]

                                    The Weierstrass curve base changed to an algebra A over R.

                                    Equations
                                      Instances For
                                        @[simp]
                                        theorem WeierstrassCurve.map_b₂ {R : Type u} [CommRing R] (W : WeierstrassCurve R) {A : Type v} [CommRing A] (f : R →+* A) :
                                        (W.map f).b₂ = f W.b₂
                                        @[simp]
                                        theorem WeierstrassCurve.map_b₄ {R : Type u} [CommRing R] (W : WeierstrassCurve R) {A : Type v} [CommRing A] (f : R →+* A) :
                                        (W.map f).b₄ = f W.b₄
                                        @[simp]
                                        theorem WeierstrassCurve.map_b₆ {R : Type u} [CommRing R] (W : WeierstrassCurve R) {A : Type v} [CommRing A] (f : R →+* A) :
                                        (W.map f).b₆ = f W.b₆
                                        @[simp]
                                        theorem WeierstrassCurve.map_b₈ {R : Type u} [CommRing R] (W : WeierstrassCurve R) {A : Type v} [CommRing A] (f : R →+* A) :
                                        (W.map f).b₈ = f W.b₈
                                        @[simp]
                                        theorem WeierstrassCurve.map_c₄ {R : Type u} [CommRing R] (W : WeierstrassCurve R) {A : Type v} [CommRing A] (f : R →+* A) :
                                        (W.map f).c₄ = f W.c₄
                                        @[simp]
                                        theorem WeierstrassCurve.map_c₆ {R : Type u} [CommRing R] (W : WeierstrassCurve R) {A : Type v} [CommRing A] (f : R →+* A) :
                                        (W.map f).c₆ = f W.c₆
                                        @[simp]
                                        theorem WeierstrassCurve.map_Δ {R : Type u} [CommRing R] (W : WeierstrassCurve R) {A : Type v} [CommRing A] (f : R →+* A) :
                                        (W.map f).Δ = f W.Δ
                                        @[simp]
                                        theorem WeierstrassCurve.map_map {R : Type u} [CommRing R] (W : WeierstrassCurve R) {A : Type v} [CommRing A] (f : R →+* A) {B : Type w} [CommRing B] (g : A →+* B) :
                                        (W.map f).map g = W.map (g.comp f)
                                        @[simp]
                                        theorem WeierstrassCurve.map_baseChange {R : Type u} [CommRing R] (W : WeierstrassCurve R) {S : Type s} [CommRing S] [Algebra R S] {A : Type v} [CommRing A] [Algebra R A] [Algebra S A] [IsScalarTower R S A] {B : Type w} [CommRing B] [Algebra R B] [Algebra S B] [IsScalarTower R S B] (g : A →ₐ[S] B) :
                                        (W.baseChange A).map g = W.baseChange B
                                        theorem WeierstrassCurve.map_injective {R : Type u} [CommRing R] {A : Type v} [CommRing A] {f : R →+* A} (hf : Function.Injective f) :

                                        2-torsion polynomials #

                                        A cubic polynomial whose discriminant is a multiple of the Weierstrass curve discriminant. If W is an elliptic curve over a field R of characteristic different from 2, then its roots over a splitting field of R are precisely the X-coordinates of the non-zero 2-torsion points of W.

                                        Equations
                                          Instances For

                                            Elliptic curves #

                                            WeierstrassCurve.IsElliptic is a typeclass which asserts that a Weierstrass curve is an elliptic curve: that its discriminant is a unit. Note that this definition is only mathematically accurate for certain rings whose Picard group has trivial 12-torsion, such as a field or a PID.

                                            Instances
                                              noncomputable def WeierstrassCurve.Δ' {R : Type u} [CommRing R] (W : WeierstrassCurve R) [W.IsElliptic] :

                                              The discriminant Δ' of an elliptic curve over R, which is given as a unit in R. Note that to prove two equal elliptic curves have the same Δ', you need to use simp_rw, as rw cannot transfer instance WeierstrassCurve.IsElliptic automatically.

                                              Equations
                                                Instances For
                                                  @[simp]
                                                  theorem WeierstrassCurve.coe_Δ' {R : Type u} [CommRing R] (W : WeierstrassCurve R) [W.IsElliptic] :
                                                  W.Δ' = W.Δ

                                                  The discriminant Δ' of an elliptic curve is equal to the discriminant Δ of it as a Weierstrass curve.

                                                  noncomputable def WeierstrassCurve.j {R : Type u} [CommRing R] (W : WeierstrassCurve R) [W.IsElliptic] :
                                                  R

                                                  The j-invariant j of an elliptic curve, which is invariant under isomorphisms over R. Note that to prove two equal elliptic curves have the same j, you need to use simp_rw, as rw cannot transfer instance WeierstrassCurve.IsElliptic automatically.

                                                  Equations
                                                    Instances For

                                                      A variant of WeierstrassCurve.j_eq_zero_iff without assuming a reduced ring.

                                                      theorem WeierstrassCurve.j_eq_zero {R : Type u} [CommRing R] (W : WeierstrassCurve R) [W.IsElliptic] (h : W.c₄ = 0) :
                                                      W.j = 0

                                                      A variant of WeierstrassCurve.j_eq_zero_iff_of_char_two without assuming a reduced ring.

                                                      A variant of WeierstrassCurve.j_eq_zero_iff_of_char_three without assuming a reduced ring.

                                                      Maps and base changes #

                                                      theorem WeierstrassCurve.coe_map_Δ' {R : Type u} [CommRing R] (W : WeierstrassCurve R) [W.IsElliptic] {A : Type v} [CommRing A] (f : R →+* A) :
                                                      (W.map f).Δ' = f W.Δ'
                                                      @[simp]
                                                      theorem WeierstrassCurve.map_Δ' {R : Type u} [CommRing R] (W : WeierstrassCurve R) [W.IsElliptic] {A : Type v} [CommRing A] (f : R →+* A) :
                                                      (W.map f).Δ' = (Units.map f) W.Δ'
                                                      theorem WeierstrassCurve.coe_inv_map_Δ' {R : Type u} [CommRing R] (W : WeierstrassCurve R) [W.IsElliptic] {A : Type v} [CommRing A] (f : R →+* A) :
                                                      (W.map f).Δ'⁻¹ = f W.Δ'⁻¹
                                                      theorem WeierstrassCurve.inv_map_Δ' {R : Type u} [CommRing R] (W : WeierstrassCurve R) [W.IsElliptic] {A : Type v} [CommRing A] (f : R →+* A) :
                                                      @[simp]
                                                      theorem WeierstrassCurve.map_j {R : Type u} [CommRing R] (W : WeierstrassCurve R) [W.IsElliptic] {A : Type v} [CommRing A] (f : R →+* A) :
                                                      (W.map f).j = f W.j