Documentation

Mathlib.AlgebraicGeometry.Fiber

Scheme-theoretic fiber #

Main result #

def AlgebraicGeometry.Scheme.Hom.fiber {X Y : Scheme} (f : X.Hom Y) (y : Y) :

f.fiber y is the scheme theoretic fiber of f at y.

Equations
    Instances For
      def AlgebraicGeometry.Scheme.Hom.fiberι {X Y : Scheme} (f : X.Hom Y) (y : Y) :
      f.fiber y X

      f.fiberι y : f.fiber y ⟶ X is the embedding of the scheme theoretic fiber into X.

      Equations
        Instances For
          instance AlgebraicGeometry.instCanonicallyOverFiber {X Y : Scheme} (f : X.Hom Y) (y : Y) :
          Equations

            The canonical map from the scheme theoretic fiber to the residue field.

            Equations
              Instances For
                @[reducible]

                The fiber of f at y is naturally a κ(y)-scheme.

                Equations
                  Instances For

                    The scheme theoretic fiber of f at y is homeomorphic to f ⁻¹' {y}.

                    Equations
                      Instances For
                        @[simp]
                        theorem AlgebraicGeometry.Scheme.Hom.fiberHomeo_apply {X Y : Scheme} (f : X.Hom Y) (y : Y) (x : (f.fiber y)) :

                        A point x as a point in the fiber of f at f x.

                        Equations
                          Instances For