Documentation

Mathlib.AlgebraicTopology.SimplexCategory.Defs

The simplex category #

We construct a skeletal model of the simplex category, with objects and the morphisms n ⟶ m being the monotone maps from Fin (n + 1) to Fin (m + 1).

In Mathlib/AlgebraicTopology/SimplexCategory/Basic.lean, we show that this category is equivalent to NonemptyFinLinOrd.

Remarks #

The definitions SimplexCategory and SimplexCategory.Hom are marked as irreducible.

We provide the following functions to work with these objects:

  1. SimplexCategory.mk creates an object of SimplexCategory out of a natural number. Use the notation ⦋n⦌ in the Simplicial locale.
  2. SimplexCategory.len gives the "length" of an object of SimplexCategory, as a natural.
  3. SimplexCategory.Hom.mk makes a morphism out of a monotone map between Fin's.
  4. SimplexCategory.Hom.toOrderHom gives the underlying monotone map associated to a term of SimplexCategory.Hom.

Notations #

@[irreducible]

The simplex category:

  • objects are natural numbers n : ℕ
  • morphisms from n to m are monotone functions Fin (n+1) → Fin (m+1)
Equations
    Instances For

      Interpret a natural number as an object of the simplex category.

      Equations
        Instances For

          the n-dimensional simplex can be denoted ⦋n⦌

          Equations
            Instances For

              The length of an object of SimplexCategory.

              Equations
                Instances For
                  theorem SimplexCategory.ext (a b : SimplexCategory) :
                  a.len = b.lena = b
                  @[simp]
                  theorem SimplexCategory.len_mk (n : ) :
                  (mk n).len = n
                  def SimplexCategory.rec {F : SimplexCategorySort u_1} (h : (n : ) → F (mk n)) (X : SimplexCategory) :
                  F X

                  A recursor for SimplexCategory. Use it as induction Δ using SimplexCategory.rec.

                  Equations
                    Instances For
                      @[irreducible]

                      Morphisms in the SimplexCategory.

                      Equations
                        Instances For
                          def SimplexCategory.Hom.mk {a b : SimplexCategory} (f : Fin (a.len + 1) →o Fin (b.len + 1)) :
                          a.Hom b

                          Make a morphism in SimplexCategory from a monotone map of Fin's.

                          Equations
                            Instances For
                              def SimplexCategory.Hom.toOrderHom {a b : SimplexCategory} (f : a.Hom b) :
                              Fin (a.len + 1) →o Fin (b.len + 1)

                              Recover the monotone map from a morphism in the simplex category.

                              Equations
                                Instances For
                                  theorem SimplexCategory.Hom.ext' {a b : SimplexCategory} (f g : a.Hom b) :
                                  f.toOrderHom = g.toOrderHomf = g
                                  @[simp]
                                  theorem SimplexCategory.Hom.mk_toOrderHom_apply {a b : SimplexCategory} (f : Fin (a.len + 1) →o Fin (b.len + 1)) (i : Fin (a.len + 1)) :
                                  (mk f).toOrderHom i = f i

                                  Identity morphisms of SimplexCategory.

                                  Equations
                                    Instances For
                                      def SimplexCategory.Hom.comp {a b c : SimplexCategory} (f : b.Hom c) (g : a.Hom b) :
                                      a.Hom c

                                      Composition of morphisms of SimplexCategory.

                                      Equations
                                        Instances For
                                          theorem SimplexCategory.Hom.ext {a b : SimplexCategory} (f g : a b) :
                                          toOrderHom f = toOrderHom gf = g

                                          The truncated simplex category.

                                          Equations
                                            Instances For

                                              The fully faithful inclusion of the truncated simplex category into the usual simplex category.

                                              Equations
                                                Instances For

                                                  A proof that the full subcategory inclusion is fully faithful

                                                  Equations
                                                    Instances For
                                                      theorem SimplexCategory.Truncated.Hom.ext {n : } {a b : Truncated n} (f g : a b) :

                                                      A quick attempt to prove that ⦋m⦌ is n-truncated (⦋m⦌.len ≤ n).

                                                      Equations
                                                        Instances For

                                                          For m ≤ n, ⦋m⦌ₙ is the m-dimensional simplex in Truncated n. The proof p : m ≤ n can also be provided using the syntax ⦋m, p⦌ₙ.

                                                          Equations
                                                            Instances For
                                                              @[reducible, inline]
                                                              abbrev SimplexCategory.Truncated.Hom.tr {n : } {a b : SimplexCategory} (f : a b) (ha : a.len n := by trunc) (hb : b.len n := by trunc) :
                                                              { obj := a, property := ha } { obj := b, property := hb }

                                                              Make a morphism in Truncated n from a morphism in SimplexCategory. This is equivalent to @id (⦋a⦌ₙ ⟶ ⦋b⦌ₙ) f.

                                                              Equations
                                                                Instances For
                                                                  theorem SimplexCategory.Truncated.Hom.tr_comp {n : } {a b c : SimplexCategory} (f : a b) (g : b c) (ha : a.len n := by trunc) (hb : b.len n := by trunc) (hc : c.len n := by trunc) :

                                                                  The inclusion of Truncated n into Truncated m when n ≤ m.

                                                                  Equations
                                                                    Instances For

                                                                      For all n ≤ m, inclusion n factors through Truncated m.

                                                                      Equations
                                                                        Instances For