Epi-mono factorization in the simplex category presented by generators and relations #
This file aims to establish that there is a nice epi-mono factorization in SimplexCategoryGenRel
.
More precisely, we introduce two morphism properties P_δ
and P_σ
that
single out morphisms that are compositions of δ i
(resp. σ i
).
The main result of this file is exists_P_σ_P_δ_factorization
, which asserts that every
moprhism as a decomposition of a P_σ
followed by a P_δ
.
@[reducible, inline]
Auxiliary predicate to express that a morphism is purely a composition of σ i
s.
Equations
Instances For
@[reducible, inline]
Auxiliary predicate to express that a morphism is purely a composition of δ i
s.
Equations
Instances For
theorem
SimplexCategoryGenRel.isSplitEpi_P_σ
{x y : SimplexCategoryGenRel}
{e : x ⟶ y}
(he : P_σ e)
:
All P_σ
are split epis as composition of such.
theorem
SimplexCategoryGenRel.isSplitMono_P_δ
{x y : SimplexCategoryGenRel}
{m : x ⟶ y}
(hm : P_δ m)
:
All P_δ
are split monos as composition of such.
theorem
SimplexCategoryGenRel.isSplitEpi_toSimplexCategory_map_of_P_σ
{x y : SimplexCategoryGenRel}
{e : x ⟶ y}
(he : P_σ e)
:
theorem
SimplexCategoryGenRel.isSplitMono_toSimplexCategory_map_of_P_δ
{x y : SimplexCategoryGenRel}
{m : x ⟶ y}
(hm : P_δ m)
:
theorem
SimplexCategoryGenRel.eq_or_len_le_of_P_δ
{x y : SimplexCategoryGenRel}
{f : x ⟶ y}
(h_δ : P_δ f)
:
theorem
SimplexCategoryGenRel.exists_P_σ_P_δ_factorization
{x y : SimplexCategoryGenRel}
(f : x ⟶ y)
:
∃ (z : SimplexCategoryGenRel) (e : x ⟶ z) (m : z ⟶ y) (_ : P_σ e) (_ : P_δ m),
f = CategoryTheory.CategoryStruct.comp e m
Any morphism in SimplexCategoryGenRel
can be decomposed as a P_σ
followed by a P_δ
.