Documentation

Mathlib.AlgebraicTopology.SimplicialNerve

The simplicial nerve of a simplicial category #

This file defines the simplicial nerve (sometimes called homotopy coherent nerve) of a simplicial category.

We define the simplicial thickening of a linear order J as the simplicial category whose hom objects i ⟶ j are given by the nerve of the poset of "paths" from i to j in J. This is the poset of subsets of the interval [i, j] in J, containing the endpoints.

The simplicial nerve of a simplicial category C is then defined as the simplicial set whose n-simplices are given by the set of simplicial functors from the simplicial thickening of the linear order Fin (n + 1) to C, in other words SimplicialNerve C _⦋n⦌ := EnrichedFunctor SSet (SimplicialThickening (Fin (n + 1))) C.

Projects #

References #

A type synonym for a linear order J, will be equipped with a simplicial category structure.

Equations
    Instances For
      structure CategoryTheory.SimplicialThickening.Path {J : Type u_1} [LinearOrder J] (i j : J) :
      Type u_1

      A path from i to j in a linear order J is a subset of the interval [i, j] in J containing the endpoints.

      • I : Set J

        The underlying subset

      • left : i self.I
      • right : j self.I
      • left_le (k : J) : k self.Ii k
      • le_right (k : J) : k self.Ik j
      Instances For
        theorem CategoryTheory.SimplicialThickening.Path.ext_iff {J : Type u_1} {inst✝ : LinearOrder J} {i j : J} {x y : Path i j} :
        x = y x.I = y.I
        theorem CategoryTheory.SimplicialThickening.Path.ext {J : Type u_1} {inst✝ : LinearOrder J} {i j : J} {x y : Path i j} (I : x.I = y.I) :
        x = y
        theorem CategoryTheory.SimplicialThickening.Path.le {J : Type u_1} [LinearOrder J] {i j : J} (f : Path i j) :
        i j
        @[simp]
        theorem CategoryTheory.SimplicialThickening.comp_I (J : Type u_1) [LinearOrder J] {i j k : SimplicialThickening J} (f : Path i j) (g : Path j k) :
        theorem CategoryTheory.SimplicialThickening.hom_ext {J : Type u_1} [LinearOrder J] (i j : SimplicialThickening J) (x y : i j) (h : ∀ (t : SimplicialThickening J), t x.I t y.I) :
        x = y

        Composition of morphisms in SimplicialThickening J, as a functor (i ⟶ j) × (j ⟶ k) ⥤ (i ⟶ k)

        Equations
          Instances For
            @[reducible, inline]

            The hom simplicial set of the simplicial category structure on SimplicialThickening J

            Equations
              Instances For
                @[reducible, inline]

                The identity of the simplicial category structure on SimplicialThickening J

                Equations
                  Instances For
                    @[reducible, inline]

                    The composition of the simplicial category structure on SimplicialThickening J

                    Equations
                      Instances For
                        @[reducible, inline]
                        noncomputable abbrev CategoryTheory.SimplicialThickening.functorMap {J K : Type u} [LinearOrder J] [LinearOrder K] (f : J →o K) (i j : SimplicialThickening J) :
                        Functor (i j) ((orderHom f) i (orderHom f) j)

                        Auxiliary definition for SimplicialThickening.functor

                        Equations
                          Instances For

                            The simplicial thickening defines a functor from the category of linear orders to the category of simplicial categories

                            Equations
                              Instances For
                                @[simp]
                                theorem CategoryTheory.SimplicialThickening.functor_obj {J K : Type u} [LinearOrder J] [LinearOrder K] (f : J →o K) (a : J) :
                                (functor f).obj a = f a

                                The simplicial nerve of a simplicial category C is defined as the simplicial set whose n-simplices are given by the set of simplicial functors from the simplicial thickening of the linear order Fin (n + 1) to C

                                Equations
                                  Instances For