Documentation

Mathlib.Analysis.Complex.UnitDisc.Basic

PoincarΓ© disc #

In this file we define Complex.UnitDisc to be the unit disc in the complex plane. We also introduce some basic operations on this disc.

The complex unit disc, denoted as 𝔻 withinin the Complex namespace

Equations
    Instances For

      The complex unit disc, denoted as 𝔻 withinin the Complex namespace

      Equations
        Instances For

          Coercion to β„‚.

          Equations
            Instances For
              @[simp]
              theorem Complex.UnitDisc.coe_inj {z w : UnitDisc} :
              ↑z = ↑w ↔ z = w
              @[deprecated Complex.UnitDisc.norm_lt_one (since := "2025-02-16")]

              Alias of Complex.UnitDisc.norm_lt_one.

              @[deprecated Complex.UnitDisc.norm_ne_one (since := "2025-02-16")]

              Alias of Complex.UnitDisc.norm_ne_one.

              @[simp]
              theorem Complex.UnitDisc.coe_mul (z w : UnitDisc) :
              ↑(z * w) = ↑z * ↑w

              A constructor that assumes β€–zβ€– < 1 instead of dist z 0 < 1 and returns an element of 𝔻 instead of β†₯Metric.ball (0 : β„‚) 1.

              Equations
                Instances For
                  @[simp]
                  theorem Complex.UnitDisc.coe_mk (z : β„‚) (hz : β€–zβ€– < 1) :
                  ↑(mk z hz) = z
                  @[simp]
                  theorem Complex.UnitDisc.mk_coe (z : UnitDisc) (hz : ‖↑zβ€– < 1 := β‹―) :
                  mk (↑z) hz = z
                  @[simp]
                  theorem Complex.UnitDisc.mk_neg (z : β„‚) (hz : β€–-zβ€– < 1) :
                  mk (-z) hz = -mk z β‹―
                  @[simp]
                  theorem Complex.UnitDisc.coe_zero :
                  ↑0 = 0
                  @[simp]
                  theorem Complex.UnitDisc.coe_eq_zero {z : UnitDisc} :
                  ↑z = 0 ↔ z = 0
                  @[simp]
                  theorem Complex.UnitDisc.mk_zero :
                  mk 0 β‹― = 0
                  @[simp]
                  theorem Complex.UnitDisc.mk_eq_zero {z : β„‚} (hz : β€–zβ€– < 1) :
                  mk z hz = 0 ↔ z = 0
                  @[simp]
                  theorem Complex.UnitDisc.coe_smul_circle (z : Circle) (w : UnitDisc) :
                  ↑(z β€’ w) = ↑z * ↑w
                  @[simp]
                  theorem Complex.UnitDisc.coe_smul_closedBall (z : ↑(Metric.closedBall 0 1)) (w : UnitDisc) :
                  ↑(z β€’ w) = ↑z * ↑w

                  Real part of a point of the unit disc.

                  Equations
                    Instances For

                      Imaginary part of a point of the unit disc.

                      Equations
                        Instances For
                          @[simp]
                          theorem Complex.UnitDisc.re_coe (z : UnitDisc) :
                          (↑z).re = z.re
                          @[simp]
                          theorem Complex.UnitDisc.im_coe (z : UnitDisc) :
                          (↑z).im = z.im
                          @[simp]
                          @[simp]

                          Conjugate point of the unit disc.

                          Equations
                            Instances For
                              @[simp]
                              theorem Complex.UnitDisc.coe_conj (z : UnitDisc) :
                              ↑z.conj = (starRingEnd β„‚) ↑z
                              @[simp]
                              @[simp]
                              @[simp]
                              theorem Complex.UnitDisc.conj_mul (z w : UnitDisc) :
                              (z * w).conj = z.conj * w.conj