PoincarΓ© disc #
In this file we define Complex.UnitDisc
to be the unit disc in the complex plane. We also
introduce some basic operations on this disc.
The complex unit disc, denoted as π»
withinin the Complex namespace
Equations
Instances For
The complex unit disc, denoted as π»
withinin the Complex namespace
Equations
Instances For
@[deprecated Complex.UnitDisc.norm_lt_one (since := "2025-02-16")]
Alias of Complex.UnitDisc.norm_lt_one
.
@[deprecated Complex.UnitDisc.norm_ne_one (since := "2025-02-16")]
Alias of Complex.UnitDisc.norm_ne_one
.
Equations
instance
Complex.UnitDisc.isScalarTower_closedBall_closedBall :
IsScalarTower (β(Metric.closedBall 0 1)) (β(Metric.closedBall 0 1)) UnitDisc
instance
Complex.UnitDisc.isScalarTower_closedBall :
IsScalarTower (β(Metric.closedBall 0 1)) UnitDisc UnitDisc
instance
Complex.UnitDisc.instSMulCommClass_closedBall :
SMulCommClass (β(Metric.closedBall 0 1)) UnitDisc UnitDisc
instance
Complex.UnitDisc.instSMulCommClass_closedBall' :
SMulCommClass UnitDisc (β(Metric.closedBall 0 1)) UnitDisc
@[simp]
Real part of a point of the unit disc.
Equations
Instances For
Imaginary part of a point of the unit disc.
Equations
Instances For
Conjugate point of the unit disc.