Documentation

Mathlib.Analysis.InnerProductSpace.Completion

Completion of an inner product space #

We show that the separation quotient and the completion of an inner product space are inner product spaces.

theorem Inseparable.inner_eq_inner {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [SeminormedAddCommGroup E] [InnerProductSpace 𝕜 E] {x₁ x₂ y₁ y₂ : E} (hx : Inseparable x₁ x₂) (hy : Inseparable y₁ y₂) :
inner 𝕜 x₁ y₁ = inner 𝕜 x₂ y₂
Equations
    @[simp]
    theorem SeparationQuotient.inner_mk_mk {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [SeminormedAddCommGroup E] [InnerProductSpace 𝕜 E] (x y : E) :
    inner 𝕜 (mk x) (mk y) = inner 𝕜 x y
    instance UniformSpace.Completion.toInner {𝕜' : Type u_4} {E' : Type u_5} [TopologicalSpace 𝕜'] [UniformSpace E'] [Inner 𝕜' E'] :
    Inner 𝕜' (Completion E')
    Equations
      @[simp]
      theorem UniformSpace.Completion.inner_coe {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [SeminormedAddCommGroup E] [InnerProductSpace 𝕜 E] (a b : E) :
      inner 𝕜 a b = inner 𝕜 a b
      theorem UniformSpace.Completion.Continuous.inner {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [SeminormedAddCommGroup E] [InnerProductSpace 𝕜 E] {α : Type u_4} [TopologicalSpace α] {f g : αCompletion E} (hf : Continuous f) (hg : Continuous g) :
      Continuous fun (x : α) => inner 𝕜 (f x) (g x)