Completion of an inner product space #
We show that the separation quotient and the completion of an inner product space are inner product spaces.
theorem
Inseparable.inner_eq_inner
{𝕜 : Type u_1}
{E : Type u_2}
[RCLike 𝕜]
[SeminormedAddCommGroup E]
[InnerProductSpace 𝕜 E]
{x₁ x₂ y₁ y₂ : E}
(hx : Inseparable x₁ x₂)
(hy : Inseparable y₁ y₂)
:
instance
SeparationQuotient.instInner
{𝕜 : Type u_1}
{E : Type u_2}
[RCLike 𝕜]
[SeminormedAddCommGroup E]
[InnerProductSpace 𝕜 E]
:
Inner 𝕜 (SeparationQuotient E)
Equations
@[simp]
theorem
SeparationQuotient.inner_mk_mk
{𝕜 : Type u_1}
{E : Type u_2}
[RCLike 𝕜]
[SeminormedAddCommGroup E]
[InnerProductSpace 𝕜 E]
(x y : E)
:
instance
SeparationQuotient.instInnerProductSpace
{𝕜 : Type u_1}
{E : Type u_2}
[RCLike 𝕜]
[SeminormedAddCommGroup E]
[InnerProductSpace 𝕜 E]
:
Equations
instance
UniformSpace.Completion.toInner
{𝕜' : Type u_4}
{E' : Type u_5}
[TopologicalSpace 𝕜']
[UniformSpace E']
[Inner 𝕜' E']
:
Inner 𝕜' (Completion E')
Equations
@[simp]
theorem
UniformSpace.Completion.inner_coe
{𝕜 : Type u_1}
{E : Type u_2}
[RCLike 𝕜]
[SeminormedAddCommGroup E]
[InnerProductSpace 𝕜 E]
(a b : E)
:
theorem
UniformSpace.Completion.continuous_inner
{𝕜 : Type u_1}
{E : Type u_2}
[RCLike 𝕜]
[SeminormedAddCommGroup E]
[InnerProductSpace 𝕜 E]
:
Continuous (Function.uncurry (inner 𝕜))
theorem
UniformSpace.Completion.Continuous.inner
{𝕜 : Type u_1}
{E : Type u_2}
[RCLike 𝕜]
[SeminormedAddCommGroup E]
[InnerProductSpace 𝕜 E]
{α : Type u_4}
[TopologicalSpace α]
{f g : α → Completion E}
(hf : Continuous f)
(hg : Continuous g)
:
Continuous fun (x : α) => inner 𝕜 (f x) (g x)
instance
UniformSpace.Completion.innerProductSpace
{𝕜 : Type u_1}
{E : Type u_2}
[RCLike 𝕜]
[SeminormedAddCommGroup E]
[InnerProductSpace 𝕜 E]
:
InnerProductSpace 𝕜 (Completion E)