Documentation

Mathlib.Analysis.Normed.Group.NullSubmodule

The null subgroup in a seminormed commutative group #

For any SeminormedAddCommGroup M, the quotient SeparationQuotient M by the null subgroup is defined as a NormedAddCommGroup instance in Mathlib/Analysis/Normed/Group/Uniform.lean. Here we define the null space as a subgroup.

Main definitions #

We use M to denote seminormed groups.

If E is a vector space over 𝕜 with an appropriate continuous action, we also define the null subspace as a submodule of E.

The null subgroup with respect to the norm.

Equations
    Instances For

      The additive null subgroup with respect to the norm.

      Equations
        Instances For
          @[simp]
          def nullSubmodule (𝕜 : Type u_2) (E : Type u_3) [SeminormedAddCommGroup E] [SeminormedRing 𝕜] [Module 𝕜 E] [IsBoundedSMul 𝕜 E] :
          Submodule 𝕜 E

          The null space with respect to the norm.

          Equations
            Instances For
              theorem isClosed_nullSubmodule {𝕜 : Type u_2} {E : Type u_3} [SeminormedAddCommGroup E] [SeminormedRing 𝕜] [Module 𝕜 E] [IsBoundedSMul 𝕜 E] :
              @[simp]
              theorem mem_nullSubmodule_iff {𝕜 : Type u_2} {E : Type u_3} [SeminormedAddCommGroup E] [SeminormedRing 𝕜] [Module 𝕜 E] [IsBoundedSMul 𝕜 E] {x : E} :