Documentation

Mathlib.Analysis.Normed.Order.Hom.Basic

Constructing (semi)normed groups from (semi)normed homs #

This file defines constructions that upgrade (Comm)Group to (Semi)Normed(Comm)Group using a Group(Semi)normClass when the codomain is the reals.

See Mathlib/Analysis/Normed/Order/Hom/Ultra.lean for further upgrades to nonarchimedean normed groups.

@[reducible, inline]
abbrev GroupSeminormClass.toSeminormedGroup {F : Type u_1} {α : Type u_2} [FunLike F α ] [Group α] [GroupSeminormClass F α ] (f : F) :

Constructs a SeminormedGroup structure from a GroupSeminormClass on a Group.

Equations
    Instances For
      @[reducible, inline]

      Constructs a SeminormedAddGroup structure from an AddGroupSeminormClass on an AddGroup.

      Equations
        Instances For
          theorem GroupSeminormClass.toSeminormedGroup_norm_eq {F : Type u_1} {α : Type u_2} [FunLike F α ] [Group α] [GroupSeminormClass F α ] (f : F) (x : α) :
          x = f x
          theorem AddGroupSeminormClass.toSeminormedAddGroup_norm_eq {F : Type u_1} {α : Type u_2} [FunLike F α ] [AddGroup α] [AddGroupSeminormClass F α ] (f : F) (x : α) :
          x = f x
          @[reducible, inline]

          Constructs a SeminormedCommGroup structure from a GroupSeminormClass on a CommGroup.

          Equations
            Instances For
              @[reducible, inline]

              Constructs a SeminormedAddCommGroup structure from an AddGroupSeminormClass on an AddCommGroup.

              Equations
                Instances For
                  theorem GroupSeminormClass.toSeminormedCommGroup_norm_eq {F : Type u_1} {α : Type u_2} [FunLike F α ] [CommGroup α] [GroupSeminormClass F α ] (f : F) (x : α) :
                  x = f x
                  @[reducible, inline]
                  abbrev GroupNormClass.toNormedGroup {F : Type u_1} {α : Type u_2} [FunLike F α ] [Group α] [GroupNormClass F α ] (f : F) :

                  Constructs a NormedGroup structure from a GroupNormClass on a Group.

                  Equations
                    Instances For
                      @[reducible, inline]
                      abbrev AddGroupNormClass.toNormedAddGroup {F : Type u_1} {α : Type u_2} [FunLike F α ] [AddGroup α] [AddGroupNormClass F α ] (f : F) :

                      Constructs a NormedAddGroup structure from an AddGroupNormClass on an AddGroup.

                      Equations
                        Instances For
                          theorem GroupNormClass.toNormedGroup_norm_eq {F : Type u_1} {α : Type u_2} [FunLike F α ] [Group α] [GroupNormClass F α ] (f : F) (x : α) :
                          x = f x
                          theorem AddGroupNormClass.toNormedAddGroup_norm_eq {F : Type u_1} {α : Type u_2} [FunLike F α ] [AddGroup α] [AddGroupNormClass F α ] (f : F) (x : α) :
                          x = f x
                          @[reducible, inline]
                          abbrev GroupNormClass.toNormedCommGroup {F : Type u_1} {α : Type u_2} [FunLike F α ] [CommGroup α] [GroupNormClass F α ] (f : F) :

                          Constructs a NormedCommGroup structure from a GroupNormClass on a CommGroup.

                          Equations
                            Instances For
                              @[reducible, inline]

                              Constructs a NormedAddCommGroup structure from an AddGroupNormClass on an AddCommGroup.

                              Equations
                                Instances For
                                  theorem GroupNormClass.toNormedCommGroup_norm_eq {F : Type u_1} {α : Type u_2} [FunLike F α ] [CommGroup α] [GroupNormClass F α ] (f : F) (x : α) :
                                  x = f x
                                  theorem AddGroupNormClass.toNormedAddCommGroup_norm_eq {F : Type u_1} {α : Type u_2} [FunLike F α ] [AddCommGroup α] [AddGroupNormClass F α ] (f : F) (x : α) :
                                  x = f x