Documentation

Mathlib.Analysis.RCLike.Inner

L2 inner product of finite sequences #

This file defines the weighted L2 inner product of functions f g : ι → R where ι is a fintype as ∑ i, conj (f i) * g i. This convention (conjugation on the left) matches the inner product coming from RCLike.innerProductSpace.

TODO #

def RCLike.wInner {ι : Type u_1} {𝕜 : Type u_3} {E : ιType u_4} [Fintype ι] [RCLike 𝕜] [(i : ι) → SeminormedAddCommGroup (E i)] [(i : ι) → InnerProductSpace 𝕜 (E i)] (w : ι) (f g : (i : ι) → E i) :
𝕜

Weighted inner product giving rise to the L2 norm, denoted as ⟪g, f⟫_[𝕜, w].

Equations
    Instances For
      @[reducible, inline]
      noncomputable abbrev RCLike.cWeight {ι : Type u_1} [Fintype ι] :
      ι

      The weight function making wInner into the compact inner product.

      Equations
        Instances For

          Weighted inner product giving rise to the L2 norm, denoted as ⟪g, f⟫_[𝕜, w].

          Equations
            Instances For

              Discrete inner product giving rise to the discrete L2 norm.

              Equations
                Instances For

                  Compact inner product giving rise to the compact L2 norm.

                  Equations
                    Instances For
                      theorem RCLike.wInner_cWeight_eq_smul_wInner_one {ι : Type u_1} {𝕜 : Type u_3} {E : ιType u_4} [Fintype ι] [RCLike 𝕜] [(i : ι) → SeminormedAddCommGroup (E i)] [(i : ι) → InnerProductSpace 𝕜 (E i)] (f g : (i : ι) → E i) :
                      @[simp]
                      theorem RCLike.conj_wInner_symm {ι : Type u_1} {𝕜 : Type u_3} {E : ιType u_4} [Fintype ι] [RCLike 𝕜] [(i : ι) → SeminormedAddCommGroup (E i)] [(i : ι) → InnerProductSpace 𝕜 (E i)] (w : ι) (f g : (i : ι) → E i) :
                      (starRingEnd 𝕜) (wInner w f g) = wInner w g f
                      @[simp]
                      theorem RCLike.wInner_zero_left {ι : Type u_1} {𝕜 : Type u_3} {E : ιType u_4} [Fintype ι] [RCLike 𝕜] [(i : ι) → SeminormedAddCommGroup (E i)] [(i : ι) → InnerProductSpace 𝕜 (E i)] (w : ι) (g : (i : ι) → E i) :
                      wInner w 0 g = 0
                      @[simp]
                      theorem RCLike.wInner_zero_right {ι : Type u_1} {𝕜 : Type u_3} {E : ιType u_4} [Fintype ι] [RCLike 𝕜] [(i : ι) → SeminormedAddCommGroup (E i)] [(i : ι) → InnerProductSpace 𝕜 (E i)] (w : ι) (f : (i : ι) → E i) :
                      wInner w f 0 = 0
                      theorem RCLike.wInner_add_left {ι : Type u_1} {𝕜 : Type u_3} {E : ιType u_4} [Fintype ι] [RCLike 𝕜] [(i : ι) → SeminormedAddCommGroup (E i)] [(i : ι) → InnerProductSpace 𝕜 (E i)] (w : ι) (f₁ f₂ g : (i : ι) → E i) :
                      wInner w (f₁ + f₂) g = wInner w f₁ g + wInner w f₂ g
                      theorem RCLike.wInner_add_right {ι : Type u_1} {𝕜 : Type u_3} {E : ιType u_4} [Fintype ι] [RCLike 𝕜] [(i : ι) → SeminormedAddCommGroup (E i)] [(i : ι) → InnerProductSpace 𝕜 (E i)] (w : ι) (f g₁ g₂ : (i : ι) → E i) :
                      wInner w f (g₁ + g₂) = wInner w f g₁ + wInner w f g₂
                      @[simp]
                      theorem RCLike.wInner_neg_left {ι : Type u_1} {𝕜 : Type u_3} {E : ιType u_4} [Fintype ι] [RCLike 𝕜] [(i : ι) → SeminormedAddCommGroup (E i)] [(i : ι) → InnerProductSpace 𝕜 (E i)] (w : ι) (f g : (i : ι) → E i) :
                      wInner w (-f) g = -wInner w f g
                      @[simp]
                      theorem RCLike.wInner_neg_right {ι : Type u_1} {𝕜 : Type u_3} {E : ιType u_4} [Fintype ι] [RCLike 𝕜] [(i : ι) → SeminormedAddCommGroup (E i)] [(i : ι) → InnerProductSpace 𝕜 (E i)] (w : ι) (f g : (i : ι) → E i) :
                      wInner w f (-g) = -wInner w f g
                      theorem RCLike.wInner_sub_left {ι : Type u_1} {𝕜 : Type u_3} {E : ιType u_4} [Fintype ι] [RCLike 𝕜] [(i : ι) → SeminormedAddCommGroup (E i)] [(i : ι) → InnerProductSpace 𝕜 (E i)] (w : ι) (f₁ f₂ g : (i : ι) → E i) :
                      wInner w (f₁ - f₂) g = wInner w f₁ g - wInner w f₂ g
                      theorem RCLike.wInner_sub_right {ι : Type u_1} {𝕜 : Type u_3} {E : ιType u_4} [Fintype ι] [RCLike 𝕜] [(i : ι) → SeminormedAddCommGroup (E i)] [(i : ι) → InnerProductSpace 𝕜 (E i)] (w : ι) (f g₁ g₂ : (i : ι) → E i) :
                      wInner w f (g₁ - g₂) = wInner w f g₁ - wInner w f g₂
                      @[simp]
                      theorem RCLike.wInner_of_isEmpty {ι : Type u_1} {𝕜 : Type u_3} {E : ιType u_4} [Fintype ι] [RCLike 𝕜] [(i : ι) → SeminormedAddCommGroup (E i)] [(i : ι) → InnerProductSpace 𝕜 (E i)] [IsEmpty ι] (w : ι) (f g : (i : ι) → E i) :
                      wInner w f g = 0
                      theorem RCLike.wInner_smul_left {ι : Type u_1} {𝕜 : Type u_3} {E : ιType u_4} [Fintype ι] [RCLike 𝕜] [(i : ι) → SeminormedAddCommGroup (E i)] [(i : ι) → InnerProductSpace 𝕜 (E i)] {𝕝 : Type u_5} [CommSemiring 𝕝] [StarRing 𝕝] [Algebra 𝕝 𝕜] [StarModule 𝕝 𝕜] [SMulCommClass 𝕝 𝕜] [(i : ι) → Module 𝕝 (E i)] [∀ (i : ι), IsScalarTower 𝕝 𝕜 (E i)] (c : 𝕝) (w : ι) (f g : (i : ι) → E i) :
                      wInner w (c f) g = star c wInner w f g
                      theorem RCLike.wInner_smul_right {ι : Type u_1} {𝕜 : Type u_3} {E : ιType u_4} [Fintype ι] [RCLike 𝕜] [(i : ι) → SeminormedAddCommGroup (E i)] [(i : ι) → InnerProductSpace 𝕜 (E i)] {𝕝 : Type u_5} [CommSemiring 𝕝] [StarRing 𝕝] [Algebra 𝕝 𝕜] [StarModule 𝕝 𝕜] [SMulCommClass 𝕝 𝕜] [(i : ι) → Module 𝕝 (E i)] [∀ (i : ι), IsScalarTower 𝕝 𝕜 (E i)] (c : 𝕝) (w : ι) (f g : (i : ι) → E i) :
                      wInner w f (c g) = c wInner w f g
                      theorem RCLike.mul_wInner_left {ι : Type u_1} {𝕜 : Type u_3} {E : ιType u_4} [Fintype ι] [RCLike 𝕜] [(i : ι) → SeminormedAddCommGroup (E i)] [(i : ι) → InnerProductSpace 𝕜 (E i)] (c : 𝕜) (w : ι) (f g : (i : ι) → E i) :
                      c * wInner w f g = wInner w (star c f) g
                      theorem RCLike.wInner_one_eq_sum {ι : Type u_1} {𝕜 : Type u_3} {E : ιType u_4} [Fintype ι] [RCLike 𝕜] [(i : ι) → SeminormedAddCommGroup (E i)] [(i : ι) → InnerProductSpace 𝕜 (E i)] (f g : (i : ι) → E i) :
                      wInner 1 f g = i : ι, inner 𝕜 (f i) (g i)
                      theorem RCLike.wInner_cWeight_eq_expect {ι : Type u_1} {𝕜 : Type u_3} {E : ιType u_4} [Fintype ι] [RCLike 𝕜] [(i : ι) → SeminormedAddCommGroup (E i)] [(i : ι) → InnerProductSpace 𝕜 (E i)] (f g : (i : ι) → E i) :
                      wInner cWeight f g = Finset.univ.expect fun (i : ι) => inner 𝕜 (f i) (g i)
                      theorem RCLike.wInner_const_left {ι : Type u_1} {𝕜 : Type u_3} [Fintype ι] [RCLike 𝕜] {w : ι} (a : 𝕜) (f : ι𝕜) :
                      wInner w (Function.const ι a) f = (∑ i : ι, w i f i) * (starRingEnd 𝕜) a
                      theorem RCLike.wInner_const_right {ι : Type u_1} {𝕜 : Type u_3} [Fintype ι] [RCLike 𝕜] {w : ι} (f : ι𝕜) (a : 𝕜) :
                      wInner w f (Function.const ι a) = a * i : ι, w i (starRingEnd 𝕜) (f i)
                      @[simp]
                      theorem RCLike.wInner_one_const_left {ι : Type u_1} {𝕜 : Type u_3} [Fintype ι] [RCLike 𝕜] (a : 𝕜) (f : ι𝕜) :
                      wInner 1 (Function.const ι a) f = (∑ i : ι, f i) * (starRingEnd 𝕜) a
                      @[simp]
                      theorem RCLike.wInner_one_const_right {ι : Type u_1} {𝕜 : Type u_3} [Fintype ι] [RCLike 𝕜] (f : ι𝕜) (a : 𝕜) :
                      wInner 1 f (Function.const ι a) = a * i : ι, (starRingEnd 𝕜) (f i)
                      @[simp]
                      theorem RCLike.wInner_cWeight_const_left {ι : Type u_1} {𝕜 : Type u_3} [Fintype ι] [RCLike 𝕜] (a : 𝕜) (f : ι𝕜) :
                      wInner cWeight (Function.const ι a) f = Finset.univ.expect fun (i : ι) => f i * (starRingEnd 𝕜) a
                      @[simp]
                      theorem RCLike.wInner_cWeight_const_right {ι : Type u_1} {𝕜 : Type u_3} [Fintype ι] [RCLike 𝕜] (f : ι𝕜) (a : 𝕜) :
                      wInner cWeight f (Function.const ι a) = a * Finset.univ.expect fun (i : ι) => (starRingEnd 𝕜) (f i)
                      theorem RCLike.wInner_one_eq_inner {ι : Type u_1} {𝕜 : Type u_3} [Fintype ι] [RCLike 𝕜] (f g : ι𝕜) :
                      wInner 1 f g = inner 𝕜 (WithLp.toLp 2 f) (WithLp.toLp 2 g)
                      theorem RCLike.inner_eq_wInner_one {ι : Type u_1} {𝕜 : Type u_3} [Fintype ι] [RCLike 𝕜] (f g : PiLp 2 fun (_i : ι) => 𝕜) :
                      inner 𝕜 f g = wInner 1 (WithLp.ofLp f) (WithLp.ofLp g)
                      theorem RCLike.linearIndependent_of_ne_zero_of_wInner_one_eq_zero {ι : Type u_1} {κ : Type u_2} {𝕜 : Type u_3} [Fintype ι] [RCLike 𝕜] {f : κι𝕜} (hf : ∀ (k : κ), f k 0) (hinner : Pairwise fun (k₁ k₂ : κ) => wInner 1 (f k₁) (f k₂) = 0) :
                      theorem RCLike.linearIndependent_of_ne_zero_of_wInner_cWeight_eq_zero {ι : Type u_1} {κ : Type u_2} {𝕜 : Type u_3} [Fintype ι] [RCLike 𝕜] {f : κι𝕜} (hf : ∀ (k : κ), f k 0) (hinner : Pairwise fun (k₁ k₂ : κ) => wInner cWeight (f k₁) (f k₂) = 0) :
                      theorem RCLike.wInner_nonneg {ι : Type u_1} {𝕜 : Type u_3} [Fintype ι] [RCLike 𝕜] {w : ι} {f g : ι𝕜} (hw : 0 w) (hf : 0 f) (hg : 0 g) :
                      0 wInner w f g
                      theorem RCLike.norm_wInner_le {ι : Type u_1} {𝕜 : Type u_3} [Fintype ι] [RCLike 𝕜] {w : ι} {f g : ι𝕜} (hw : 0 w) :
                      wInner w f g wInner w (fun (i : ι) => f i) fun (i : ι) => g i
                      theorem RCLike.abs_wInner_le {ι : Type u_1} [Fintype ι] {w f g : ι} (hw : 0 w) :
                      |wInner w f g| wInner w |f| |g|