Documentation

Mathlib.Analysis.SpecialFunctions.Complex.CircleAddChar

Additive characters valued in the unit circle #

This file defines additive characters, valued in the unit circle, from either

These results are separate from Analysis.SpecialFunctions.Complex.Circle in order to reduce the imports of that file.

The canonical map from the additive to the multiplicative circle, as an AddChar.

Equations
    Instances For

      Additive characters valued in the complex circle #

      noncomputable def ZMod.toCircle {N : } [NeZero N] :

      The additive character from ZMod N to the unit circle in , sending j mod N to exp (2 * π * I * j / N).

      Equations
        Instances For
          theorem ZMod.toCircle_intCast {N : } [NeZero N] (j : ) :
          (toCircle j) = Complex.exp (2 * Real.pi * Complex.I * j / N)
          theorem ZMod.toCircle_natCast {N : } [NeZero N] (j : ) :
          (toCircle j) = Complex.exp (2 * Real.pi * Complex.I * j / N)
          theorem ZMod.toCircle_apply {N : } [NeZero N] (j : ZMod N) :
          (toCircle j) = Complex.exp (2 * Real.pi * Complex.I * j.val / N)

          Explicit formula for toCircle j. Note that this is "evil" because it uses ZMod.val. Where possible, it is recommended to lift j to and use toCircle_intCast instead.

          theorem ZMod.toCircle_eq_circleExp {N : } [NeZero N] (j : ZMod N) :
          toCircle j = Circle.exp (2 * Real.pi * (j.val / N))
          noncomputable def ZMod.stdAddChar {N : } [NeZero N] :

          The additive character from ZMod N to , sending j mod N to exp (2 * π * I * j / N).

          Equations
            Instances For
              theorem ZMod.stdAddChar_coe {N : } [NeZero N] (j : ) :
              stdAddChar j = Complex.exp (2 * Real.pi * Complex.I * j / N)
              theorem ZMod.stdAddChar_apply {N : } [NeZero N] (j : ZMod N) :

              The standard additive character ZMod N → ℂ is primitive.

              noncomputable def ZMod.rootsOfUnityAddChar (n : ) [NeZero n] :

              ZMod.toCircle as an AddChar into rootsOfUnity n Circle.

              Equations
                Instances For
                  @[simp]
                  theorem ZMod.rootsOfUnityAddChar_val (n : ) [NeZero n] (x : ZMod n) :
                  noncomputable def rootsOfUnitytoCircle (n : ) [NeZero n] :

                  Interpret n-th roots of unity in as elements of the circle

                  Equations
                    Instances For
                      noncomputable def rootsOfUnityCircleEquiv (n : ) [NeZero n] :

                      Equivalence of the nth roots of unity of the Circle with nth roots of unity of the complex numbers

                      Equations
                        Instances For
                          @[simp]
                          theorem rootsOfUnityCircleEquiv_apply (n : ) [NeZero n] (w : (rootsOfUnity n Circle)) :
                          ((rootsOfUnityCircleEquiv n) w) = w