Documentation

Mathlib.Analysis.SpecialFunctions.Complex.LogDeriv

Differentiability of the complex log function #

Complex.exp as a PartialHomeomorph with source = {z | -π < im z < π} and target = {z | 0 < re z} ∪ {z | im z ≠ 0}. This definition is used to prove that Complex.log is complex differentiable at all points but the negative real semi-axis.

Equations
    Instances For
      theorem HasStrictFDerivAt.clog {E : Type u_2} [NormedAddCommGroup E] [NormedSpace E] {f : E} {f' : E →L[] } {x : E} (h₁ : HasStrictFDerivAt f f' x) (h₂ : f x Complex.slitPlane) :
      HasStrictFDerivAt (fun (t : E) => Complex.log (f t)) ((f x)⁻¹ f') x
      theorem HasStrictDerivAt.clog {f : } {f' x : } (h₁ : HasStrictDerivAt f f' x) (h₂ : f x Complex.slitPlane) :
      HasStrictDerivAt (fun (t : ) => Complex.log (f t)) (f' / f x) x
      theorem HasStrictDerivAt.clog_real {f : } {x : } {f' : } (h₁ : HasStrictDerivAt f f' x) (h₂ : f x Complex.slitPlane) :
      HasStrictDerivAt (fun (t : ) => Complex.log (f t)) (f' / f x) x
      theorem HasFDerivAt.clog {E : Type u_2} [NormedAddCommGroup E] [NormedSpace E] {f : E} {f' : E →L[] } {x : E} (h₁ : HasFDerivAt f f' x) (h₂ : f x Complex.slitPlane) :
      HasFDerivAt (fun (t : E) => Complex.log (f t)) ((f x)⁻¹ f') x
      theorem HasDerivAt.clog {f : } {f' x : } (h₁ : HasDerivAt f f' x) (h₂ : f x Complex.slitPlane) :
      HasDerivAt (fun (t : ) => Complex.log (f t)) (f' / f x) x
      theorem HasDerivAt.clog_real {f : } {x : } {f' : } (h₁ : HasDerivAt f f' x) (h₂ : f x Complex.slitPlane) :
      HasDerivAt (fun (t : ) => Complex.log (f t)) (f' / f x) x
      theorem DifferentiableAt.clog {E : Type u_2} [NormedAddCommGroup E] [NormedSpace E] {f : E} {x : E} (h₁ : DifferentiableAt f x) (h₂ : f x Complex.slitPlane) :
      DifferentiableAt (fun (t : E) => Complex.log (f t)) x
      theorem HasFDerivWithinAt.clog {E : Type u_2} [NormedAddCommGroup E] [NormedSpace E] {f : E} {f' : E →L[] } {s : Set E} {x : E} (h₁ : HasFDerivWithinAt f f' s x) (h₂ : f x Complex.slitPlane) :
      HasFDerivWithinAt (fun (t : E) => Complex.log (f t)) ((f x)⁻¹ f') s x
      theorem HasDerivWithinAt.clog {f : } {f' x : } {s : Set } (h₁ : HasDerivWithinAt f f' s x) (h₂ : f x Complex.slitPlane) :
      HasDerivWithinAt (fun (t : ) => Complex.log (f t)) (f' / f x) s x
      theorem HasDerivWithinAt.clog_real {f : } {s : Set } {x : } {f' : } (h₁ : HasDerivWithinAt f f' s x) (h₂ : f x Complex.slitPlane) :
      HasDerivWithinAt (fun (t : ) => Complex.log (f t)) (f' / f x) s x
      theorem DifferentiableWithinAt.clog {E : Type u_2} [NormedAddCommGroup E] [NormedSpace E] {f : E} {s : Set E} {x : E} (h₁ : DifferentiableWithinAt f s x) (h₂ : f x Complex.slitPlane) :
      DifferentiableWithinAt (fun (t : E) => Complex.log (f t)) s x
      theorem DifferentiableOn.clog {E : Type u_2} [NormedAddCommGroup E] [NormedSpace E] {f : E} {s : Set E} (h₁ : DifferentiableOn f s) (h₂ : xs, f x Complex.slitPlane) :
      DifferentiableOn (fun (t : E) => Complex.log (f t)) s
      theorem Differentiable.clog {E : Type u_2} [NormedAddCommGroup E] [NormedSpace E] {f : E} (h₁ : Differentiable f) (h₂ : ∀ (x : E), f x Complex.slitPlane) :
      Differentiable fun (t : E) => Complex.log (f t)
      theorem Complex.deriv_log_comp_eq_logDeriv {f : } {x : } (h₁ : DifferentiableAt f x) (h₂ : f x slitPlane) :
      deriv (log f) x = logDeriv f x

      The derivative of log ∘ f is the logarithmic derivative provided f is differentiable and we are on the slitPlane.